Elektrischer Antrieb

Hohe Leistung Schlittenausführung

Einzelheiten dazu finden Sie ab Seite 57

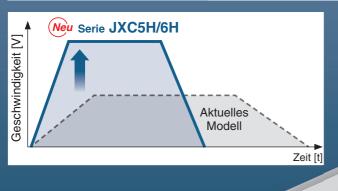
Schrittmotor 24 VDC, batterieloser Absolut-Encoder

Reduzierte die Zykluszeit

Zykluszeit

Reduziert um 39 % (0,57 s + 0,93 s) im Vergleich zum bestehende Serie*1

*1 Wenn LEFS25GH-400 über den gesamten Hub betrieben wird


Beschleunigung/ Verzögerung

10000 mm/s 2

(334 % höher im Vergleich zur bestehenden Serie)

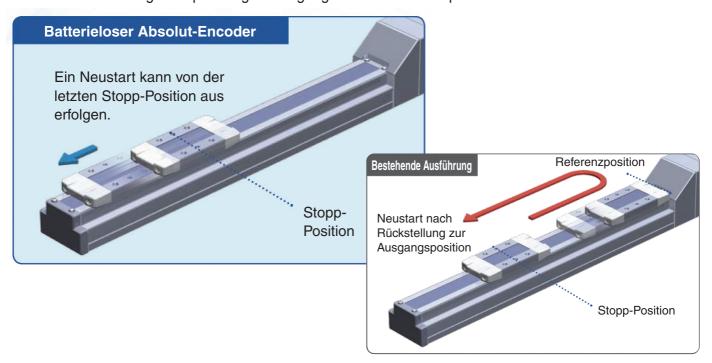
Max. Geschwindigkeit $1500 \, \text{mm/s}$

(Um 25 % besser im Vergleich zur bestehenden Serie)

Hohe Leistung Schrittmotor-Controller Ermöglicht die Einstellung einer höheren Beschleunigung und maximalen Geschwindigkeit mit dem speziellen Controller (für Serie LEFS□G). Parallel-I/O Serie JXC5H/6H s. 43

EtherCAT/EtherNet/IP™/PROFINET

Serie JXCEH/9H/PH s. 50


Serie LEFS G

Mit Schrittmotor mit batterielosem Absolut-Encoder

Einfacher Neustart nach Wiederherstellung der Spannungsversorgung

Der am Motor montierte batterielose Absolut-Encoder (Absolutwertgeber) behält die Positionsinformationen jederzeit bei, unabhängig davon, ob die Spannungsversorgung der Steuerung ein- oder ausgeschaltet ist. Bei Wiederherstellung der Spannungsversorgung ist keine Referenzpunktfahrt erforderlich.

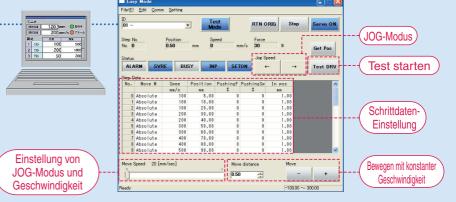
Dank der batterielosen Ausführung des Encoders kann der Wartungsaufwand reduziert werden.

Für die Speicherung der Positionsdaten sind keine Batterien erforderlich. Daher müssen keine Ersatzbatterien gelagert oder leere Batterien recycelt und ausgetauscht werden.

Ausführung mit Schrittdateneingabe Serie JXC5H/6H S.43

Einfache Einstellung, sofort einsatzbereit

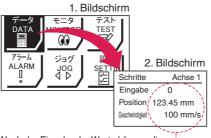
"Easy-Mode" für einfache Einstellung


Für den sofortigen Einsatz wählen Sie den "Easy-Mode"

mit batterielosem Absolut-Encoder in High Performance Ausführung JXC5H/6H

<Bei verwendung eines PCs> **Controller-Software**

 Schrittdaten, Testbetrieb, JOG-Modus und Verfahren mit konstanter Geschwindigkeit können über eine Maske eingestellt und betätigt werden.



<Bei Verwendung einer Teaching-Box>

- Die einfache Maske ohne Scrollfunktion ermöglicht eine einfache Einstellung und Bedienung.
- Wählen Sie ein Symbol im ersten Bildschirm, um eine Funktion auszuwählen.
- Stellen Sie die Schrittdaten ein und überprüfen Sie diese in einer weiteren Maske.

Beispiel für die Einstellung der Schrittdaten

Nach der Eingabe der Werte können diese durch Drücken von "SET" übernommen werden.

Beispiel für die Überprüfung des Betriebsstatus 1. Bildschirm

設定 SETTIN

Achse 1 Anzeige Eingabe Position 12.34 mm Geschwindigkeit 10 mm/s Der Betriebsstatus

kann überprüft werden.

2. Bildschirm

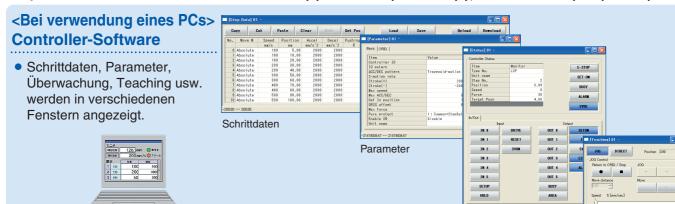
Teaching-Box-Maske

 Dateneinstellung durch Eingabe von Position und Geschwindigkeit (Andere Bedingungen sind voreingestellt.)

Schritte	Achse 1
Eingabe	0
Position	50.00 mm
Geschwindigkeit	200 mm/s

Schritte Achse 1 Eingabe Position 80.00 mm Geschwindigkeit 100 mm/s

Ausführung mit Schrittdateneingabe Serie JXC5H/6H

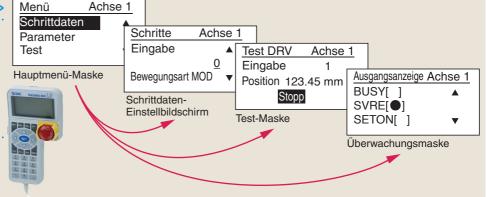

"Normal Mode" für detaillierte Einstellung

Wählen Sie "Normal Mode", wenn eine detaillierte Einstellung benötigt wird.

- Die Schrittdaten können im Detail eingestellt werden. Einstellung der Parameter
- Signale und Klemmenstatus können überwacht werden.
 JOG und Bewegung mit konstanter Geschwindigkeit, Rückkehr zur Ausgangsposition, Testlauf und Test der erzwungenen Ausgabe können ausgeführt werden.

Überwachung

Teaching

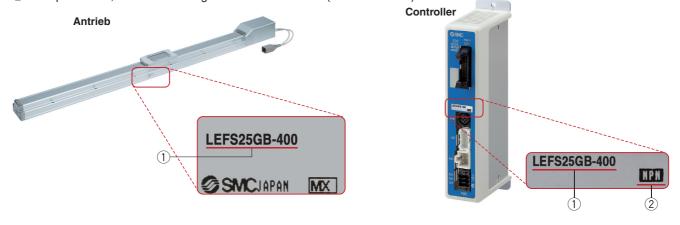


<Bei Verwendung einer Teaching-Box>

- Verschiedene Schrittdaten k\u00f6nnen in der Teaching-Box gespeichert und an den Controller übertragen werden.
- Kontinuierlicher Testbetrieb mit bis zu 5 Schrittdaten.

Teaching-Box-Maske

 Die einzelnen Funktionen (Schrittdaten, Test, Überwachung usw.) können aus dem Hauptmenü gewählt werden.



Antrieb und Controller werden als Paket geliefert. (Komponenten können auch separat bestellt werden.)

Stellen Sie sicher, dass die Kombination aus Controller und Antrieb korrekt ist.

<Prüfen Sie vor der Verwendung folgende Punkte>

- ① Überprüfen Sie die Modellnummer auf dem Typenschild des Antriebs. Diese Nummer muss mit der des Controllers übereinstimmen.
- ② Überprüfen Sie, ob die I/O-Konfiguration übereinstimmt (NPN oder PNP).

Funktion

Element	Ausführung mit Schrittdateneingabe JXC5H/6H	
Schrittdaten und Parametereinstellung	Eingabe über Controller-Einstellungssoftware (PC) Eingabe über Teaching-Box	
Positionseinstellung der Schrittdaten	Eingabe über Controller-Einstellungssoftware (PC) Eingabe über Teaching-Box Numerische Werteingabe über die Controller-Einstellsoftware (PC) oder die Teaching-Box Eingabe eines numerischen Wertes Direktes Teaching JOG-Teaching	
Anzahl der Schrittdaten	64 Punkte	
Fahrbefehl (I/O-Signal)	Eingabe [IN *] Eingang \Rightarrow [DRIVE] Eingang	
Abschlusssignal	INP-Ausgang	

Einstellparameter

TB: Teaching-Box PC: Controller-Software

Element		Inhalt	EASY- Mode				NORMAL- Mode	Schrittdateneingabe
				PC	TB/PC	JXC5H/6H		
	Bewegungsart MOD	Auswahl "absolute Position" und "relative Position"	Δ	•	•	Eingestellt auf ABS/INC		
	Geschwindigkeit	Verfahrgeschwindigkeit	•	•	•	Einstellung in Einheiten von 1 mm/s		
	Position	[Position]: Zielposition [Schieben]: Schub-Startposition	•	•	•	Einstellung in Einheiten von 0,01 mm		
	Beschleunigung/Verzögerung	Beschleunigung/Verzögerung während der Bewegung	•	•	•	Einstellung in Einheiten von 1 mm/s²		
Schrittdaten-	Schubkraft	Krafteinsatz während des Schubbetriebs	•	•	•	Einstellung in Einheiten von 1 %		
Einstellung (Auszug)	Trigger LV	Schwellenwert der Zielkraft während des Vorschubbetriebs	Δ	•	•	Einstellung in Einheiten von 1 %		
	Schubgeschwindigkeit	Geschwindigkeit während des Schubbetriebs	Δ	•	•	Einstellung in Einheiten von 1 mm/s		
	Stellkraft	Kraft während des Positionierbetriebs	Δ	•	•	Auf 100 % eingestellt		
	Bereichsausgang	Bedingungen für Einschaltung des Bereichsausgangssignals	Δ	•	•	Einstellung in Einheiten von 0,01 mm		
	In Position	[Position]: Abstand zur Zielposition [Schieben]: Umfang der Bewegung beim Schieben	Δ	•	•	Einstellung auf 0,5 mm oder mehr (Einheiten: 0,01 mm)		
	Hub (+)	+ seitliche Positionsbegrenzung	×	×	•	Einstellung in Einheiten von 0,01 mm		
Parameter-	Hub (-)	- seitliche Positionsbegrenzung	×	×	•	Einstellung in Einheiten von 0,01 mm		
einstellung	Richtung Ausgangsposition	Richtung der Rückkehr zur Ausgangsposition kann eingestellt werden.	×	×	•	Kompatibel		
(Auszug)	Geschwindigkeit Ausgangsposition	Geschwindigkeit bei der Rückkehr zur Ausgangsposition	×	×	•	Einstellung in Einheiten von 1 mm/s		
	AusgangspositionBeschl.	Beschleunigung bei der Rückkehr zur Ausgangsposition	×	×	•	Einstellung in Einheiten von 1 mm/s²		
	JOG		•	•	•	Der Dauerbetrieb mit der eingestellten Geschwindigkeit kann getestet werden, während der Schalter gedrückt wird.		
Test	BEWEGEN		×	•	•	Der Betrieb kann mit dem eingestellten Abstand und der Geschwindigkeit von der aktuellen Position aus getestet werden.		
	Zurück zu AUSGANGSPOSITION		•	•	•	Kompatibel		
	Testlauf	Verwendung der angegebenen Schrittdaten	•	•	(Kontinuierlicher Betrieb)	Kompatibel		
	Erzwungene Ausgabe	ON/OFF der Ausgangsklemme kann getestet werden.	×	×	•	Kompatibel		
Anzoigo	Überw. DRV	Die aktuelle Position, die Geschwindigkeit, die Kraft und die angegebenen Schrittdaten können überwacht werden.	•	•	•	Kompatibel		
Anzeige	Überw. IN/OUT	Der aktuelle ON/OFF-Status der Ein-/ Ausgangsklemme kann überwacht werden.	×	×	•	Kompatibel		
ALM	Status	Der aktuell generierte Alarm kann bestätigt werden.	•	•	•	Kompatibel		
ALIVI	ALARM-Protokollaufzeichnung	In der Vergangenheit generierte Alarme können bestätigt werden.	×	×	•	Kompatibel		
Datei	Speichern/Laden	Schrittdaten und Parameter können gespeichert, weitergeleitet und gelöscht werden.	×	×	•	Kompatibel		
Sonstiges	Sprache	Kann auf Japanisch oder Englisch umgestellt werden	•	•	•	Kompatibel		

 \triangle : Kann eingestellt werden ab TB Ver. 2.** (Die Versionsinformationen werden auf dem Startbildschirm angezeigt.)

Feldbussystem

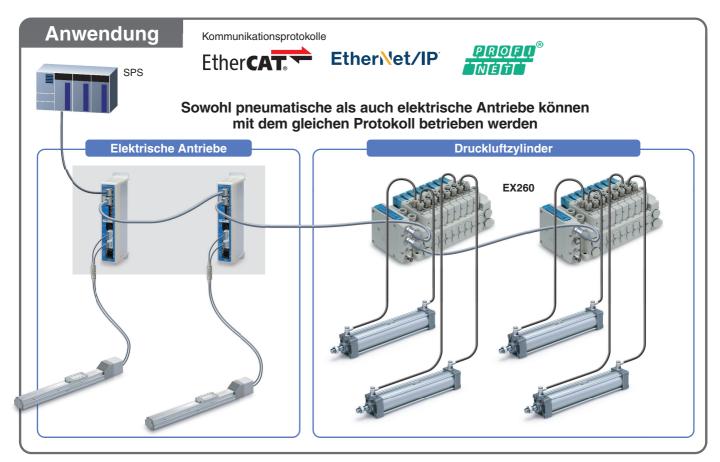
EtherCAT/EtherNet/IP™/PROFINET Ausführung Schrittmotor-Controller/Serie JXC□ ■ 50

EtherNet/IP

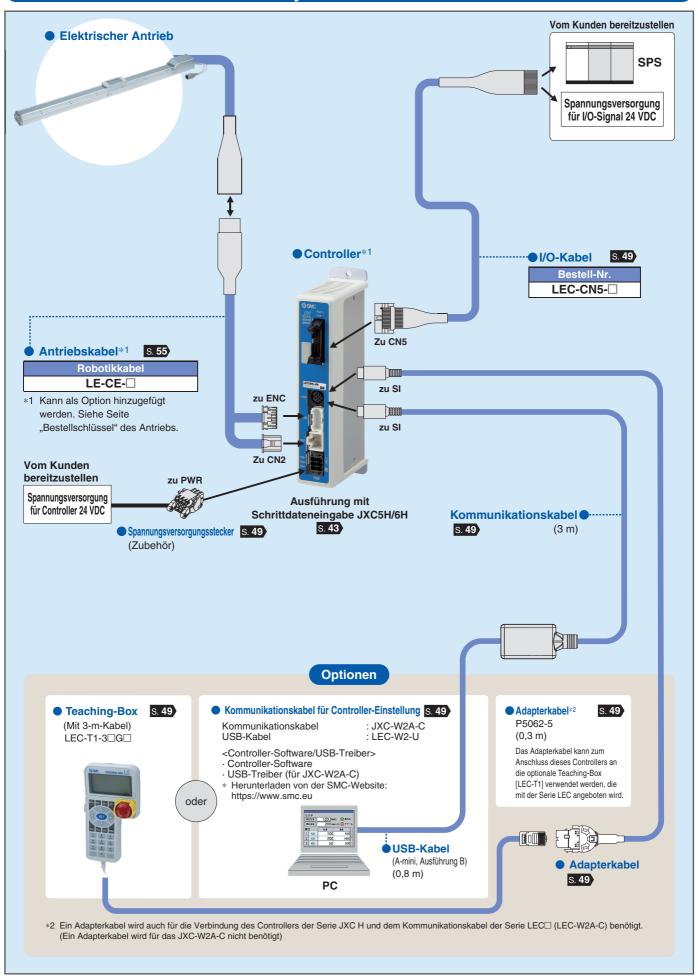
OZwei verschiedene Arten von Fahrbefehlen

Eingabe der Schritt-Nummer: Betrieb durch Verwendung der voreingestellten Schrittdaten im Controller.

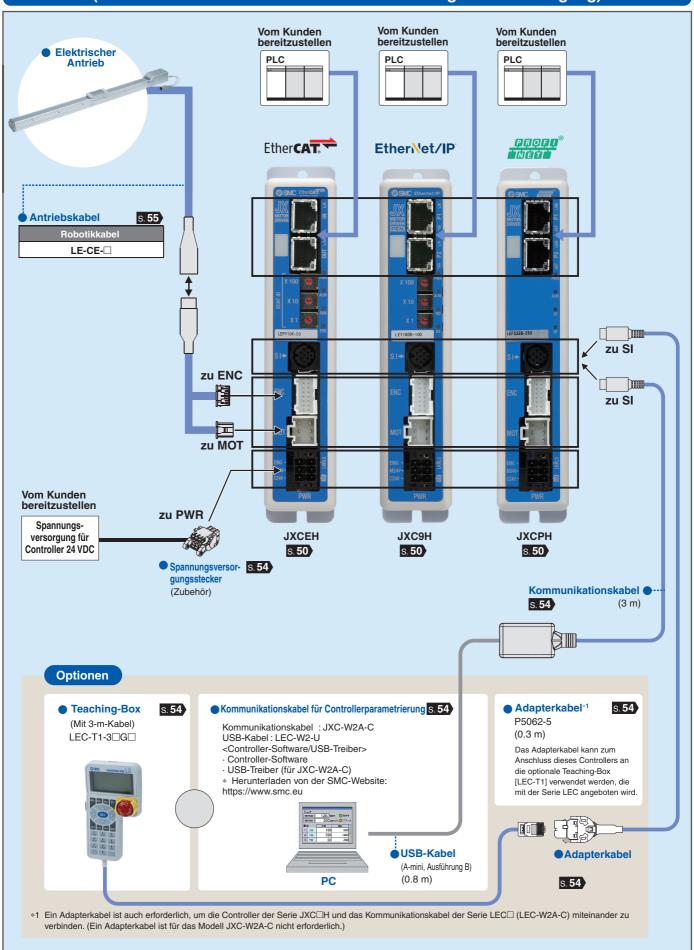
Numerische Dateneingabe: Der Antrieb arbeitet mit Werten wie Position und Geschwindigkeit von einer übergeordneten Steuerung.


Lesen von Statusdaten

Statusdaten, wie z. B. die aktuelle Geschwindigkeit und Position sowie Alarmcodes, können über eine SPS gelesen werden.


ODaisy Chain Verdrahtungsschema

Es stehen zwei Kommunikationsanschlüsse zur Verfügung.

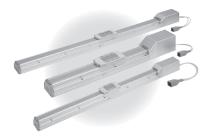


System-Aufbau

System-Aufbau (EtherCAT/EtherNet/IP™/PROFINET Ausführung mit Direkteingang)

Elektrischer Antrieb

Hohe Leistung Schlittenausführung


Schlittenausführung/Spindelantrieb Serie *LEFS* G

INHALT

Hohe Leistung Schlittenausführung/Spindelantrieb Serie $LEFS \square G$ 5.8

Schrittmotor 24 VDC, batterieloser Absolut-Encoder

Typenauswahl	S. 9
Bestellschlüssel ·····	····· S. 17
Technische Daten	······ S. 19
Abmessungen ·····	S. 21
Signalgebermontage	S. 37

Controller Serie JXC□H S.42

Hohe Leistung Controller (Ausführung mit Schrittdateneingabe) Serie JXC5H/6H (Schrittmotor 24 VDC, batterieloser Absolut-Encoder

Bestellschlüssel ·····	S.	43
Technische Daten	S.	43
Abmessungen ·····	S.	45
Optionen ·····	S.	49
Antriebskabel	S.	55

Hohe Leistung Schrittmotor-Controller Serie JXCEH/9H/PH Schrittmotor 24 VDC, batterieloser Absolut-Encoder

Bestellschlüssel ····	 S. 50
Technische Daten	 S. 51
Abmessungen ······	 S. 52
Optionen ·····	 S. 54
Antriebskabel	 S. 55

Batterieloser Absolutwertgeber pro	duktspezifische Sicherheitshinweise	 · S.	56
CE/UKCA/UL-Konformitätsliste		. S.	57

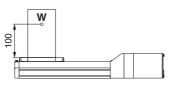
ypenauswahl

Auswahlverfahren

Überprüfen Sie das Verhältnis Nutzlast-Geschwindigkeit.

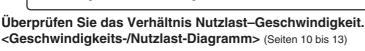
Überprüfen Sie die Zykluszeit.

Überprüfen Sie das zulässige Moment.


Auswahlbeispiel

Betriebsbedingungen

Schritt 1


- •Werkstückgewicht: 10 [kg]
- Geschwindigkeit: 300 [mm/s]
- Beschleunigung/Verzögerung: 10000 [mm/s²]
- Hub: 200 [mm]
- Einbaulage: Horizontal ansteigend

Werkstückmontage:

Wählen Sie das Modell entsprechend dem Werkstückgewicht und Geschwindigkeit unter Berücksichtigung des Geschwindigkeits-/Nutzlast-Diagramms.

Auswahlbeispiel) Das LEFS25GA-200 kann vorübergehend als mögliches Modell

anhand des Diagramms auf der rechten Seite gewählt werden.

Schritt 2 Überprüfen Sie die Zykluszeit.

Berechnen Sie die Zykluszeit mit der folgenden Berechnungsmethode.

Zykluszeit:

T wird aus folgender Gleichung berechnet.

$$T = T1 + T2 + T3 + T4 [s]$$

•T1: Beschleunigungszeit und T3: Die Verzögerungszeit kann anhand der folgenden Gleichung ermittelt werden.

• T2: Die Zeit mit konstanter Geschwindigkeit kann anhand der folgenden Gleichung berechnet werden.

$$T2 = \frac{L - 0.5 \cdot V \cdot (T1 + T3)}{V}[s]$$

• T4: Die Einschwingzeit ist abhängig von Bedingungen wie Motortyp, Last und der Positionierung. Referenzwert für die Einschwingzeit: 0,15 s oder weniger Der folgende Wert wird für diese Berechnung verwendet.

Berechnungsbeispiel)

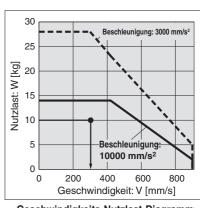
T1 bis T4 können wie folgt ermittelt werden.

$$T3 = V/a2 = 300/10000 = 0.03 [s]$$

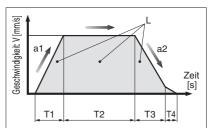
$$T2 = \frac{L - 0.5 \cdot V \cdot (T1 + T3)}{V}$$

$$=\frac{200-0.5\cdot300\cdot(0.03+0.03)}{300}$$

$$= 0.64 [s]$$


$$T4 = 0.15 [s]$$

Die Zykluszeit kann wie folgt berechnet werden.


$$T = T1 + T2 + T3 + T4$$

$$= 0.03 + 0.64 + 0.03 + 0.15$$

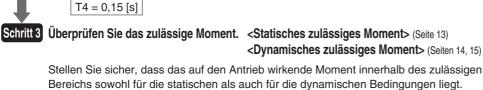
= 0.85 [s]

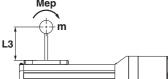
<Geschwindigkeits-Nutzlast-Diagramm> (LEFS25GA/Batterieloser Absolutwertgeber)

- L: Hub [mm] ··· (Betriebszustand)
- V : Geschwindigkeit [mm/s] ··· (Betriebszustand)
- a1: Beschleunigung [mm/s2] ··· (Betriebszustand)
- a2: Verzögerung [mm/s²] ··· (Betriebszustand)
- T1: Beschleunigungszeit [s] Zeit bis zum Erreichen der eingestellten Geschwindigkeit
- T2: Zeit der konstanten Geschwindigkeit [s] Zeit, während der der Antrieb mit konstanter Geschwindigkeit betrieben wird
- T3: Verzögerungszeit [s]

Zeit vom Beginn des Betriebs mit konstanter Geschwindigkeit bis zum Stopp

T4: Ausregelzeit [s]

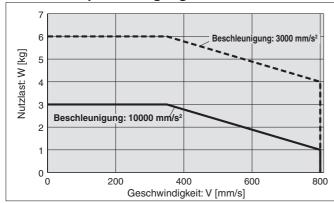

1000

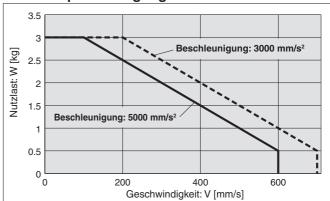

600 400 200

Jberhang: L3 [mm]

Zeit bis zum Abschluss der Positionierung

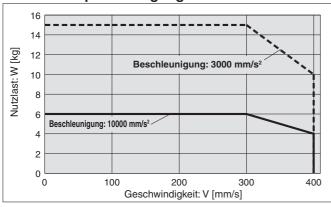
0 5 10 15 20 25 30 35 40 Nutzlast [kg]



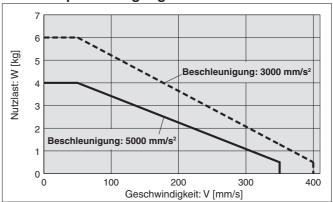

Geschwindigkeits-Nutzlast-Diagramm (Führung) Die folgenden Diagramme zeigen die Werte bei einer Bewegungskraft von 100 %.

LEFS16GA/Spindelantrieb

Horizontal/Spindelsteigung 10mm



Vertikal/Spindelsteigung 10mm

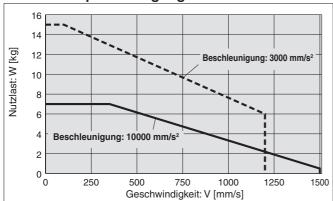


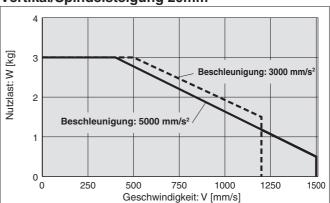
LEFS16GB/Spindelantrieb

Horizontal/Spindelsteigung 5mm

Vertikal/Spindelsteigung 5mm

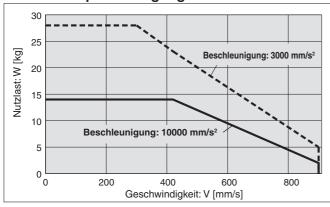
Betriebstemperatur: Verwenden Sie Produkte mit einer Einschaltdauer von 100 % oder weniger, wenn die Temperatur unter 30 °C liegt, und mit einer Einschaltdauer von 35 % oder weniger, wenn die Temperatur über 30 °C liegt.



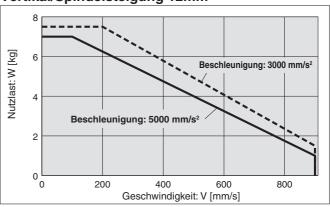

Geschwindigkeits-Nutzlast-Diagramm (Führung) * Die folgenden Diagramme zeigen die Werte bei einer Bewegungskraft von 100 %.

LEFS25GH/Spindelantrieb

Horizontal/Spindelsteigung 20mm

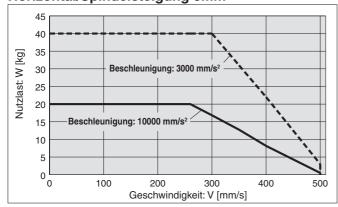


Vertikal/Spindelsteigung 20mm

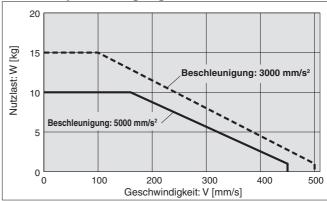


LEFS25GA/Spindelantrieb

Horizontal/Spindelsteigung 12mm



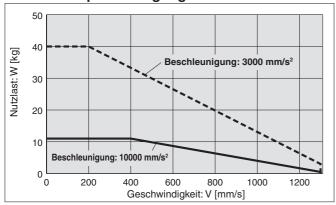
Vertikal/Spindelsteigung 12mm

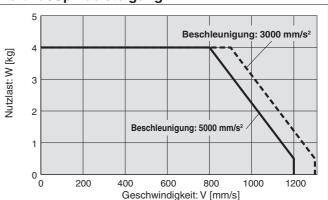


LEFS25GB/Spindelantrieb

Horizontal/Spindelsteigung 6mm

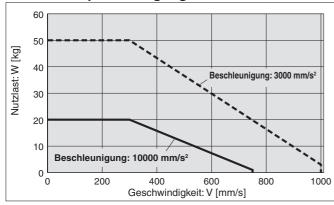
Vertikal/Spindelsteigung 6mm


Betriebstemperatur: Verwenden Sie Produkte mit einer Einschaltdauer von 100 % oder weniger, wenn die Temperatur unter 30 °C liegt, und mit einer Einschaltdauer von 35 % oder weniger, wenn die Temperatur über 30 °C liegt.

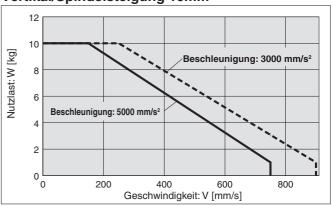

Geschwindigkeits-Nutzlast-Diagramm (Führung) * Die folgenden Diagramme zeigen die Werte bei einer Bewegungskraft von 100 %.

LEFS32GH/Spindelantrieb

Horizontal/Spindelsteigung 24mm

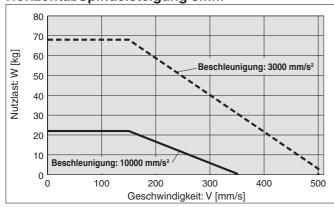


Vertikal/Spindelsteigung 24mm

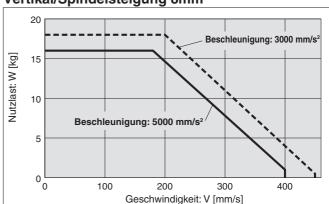


LEFS32GA/Spindelantrieb

Horizontal/Spindelsteigung 16mm



Vertikal/Spindelsteigung 16mm

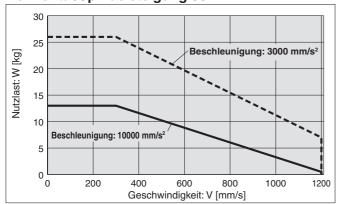


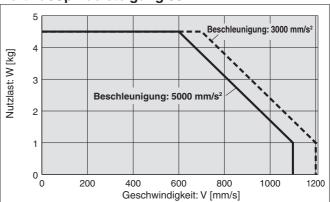
LEFS32GB/Spindelantrieb

Horizontal/Spindelsteigung 8mm

Vertikal/Spindelsteigung 8mm

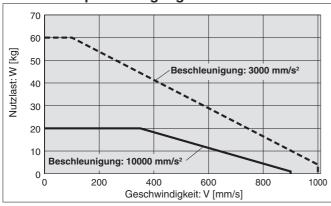
Betriebstemperatur: Verwenden Sie Produkte mit einer Einschaltdauer von 100 % oder weniger, wenn die Temperatur unter 30 °C liegt, und mit einer Einschaltdauer von 35 % oder weniger, wenn die Temperatur über 30 °C liegt.



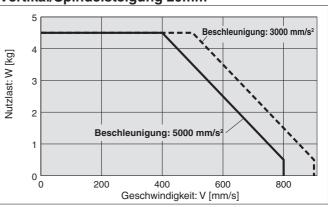

Geschwindigkeits-Nutzlast-Diagramm (Führung) * Die folgenden Diagramme zeigen die Werte bei einer Bewegungskraft von 100 %.

LEFS40GH/Spindelantrieb

Horizontal/Spindelsteigung 30mm

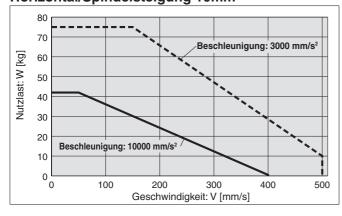


Vertikal/Spindelsteigung 30mm

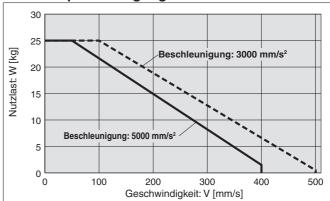


LEFS40GA/Spindelantrieb

Horizontal/Spindelsteigung 20mm



Vertikal/Spindelsteigung 20mm



LEFS40GB/Spindelantrieb

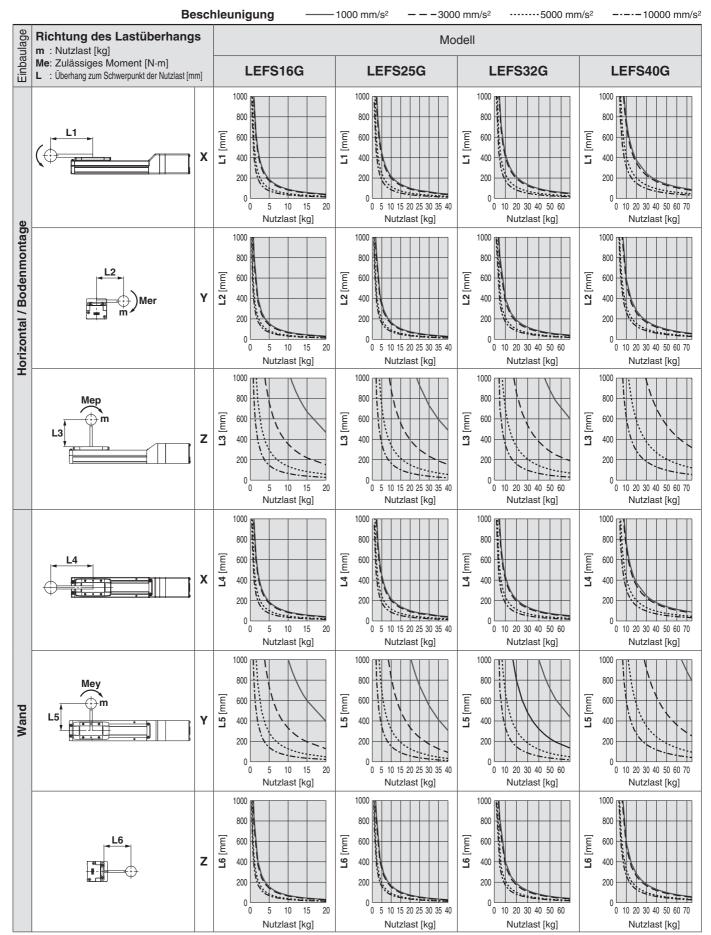
Horizontal/Spindelsteigung 10mm

Vertikal/Spindelsteigung 10mm

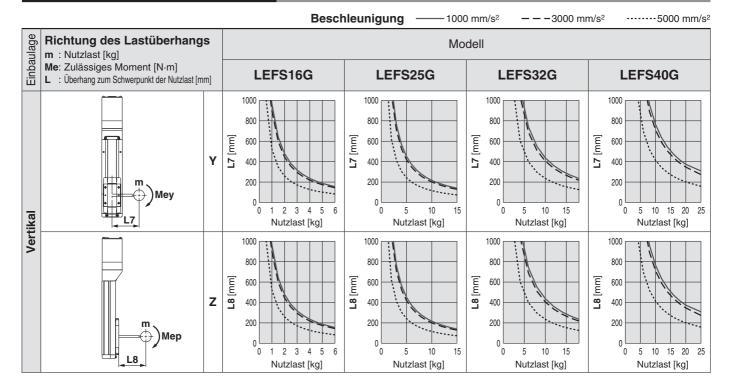
Betriebstemperatur: Verwenden Sie Produkte mit einer Einschaltdauer von 100 % oder weniger, wenn die Temperatur unter 30 °C liegt, und mit einer Einschaltdauer von 35 % oder weniger, wenn die Temperatur über 30 °C liegt.

Zulässige statische Momente*1

Modell	Größe	Kippmoment	Gierbewegung	Rollen
	16	10,0	10,0	20,0
LEFS□G	25	27,0	27,0	
LEF3_G	32	46,0	46,0	101,0
	40	110,0	110,0	207,0


*1 Das zulässige statische Moment ist der Wert des statischen Moments, das auf den Antrieb einwirken kann, wenn er angehalten wird. Wenn das Produkt Stößen oder wiederholten Lasten ausgesetzt wird, müssen Sie bei der Verwendung des Produkts angemessene Sicherheitsmaßnahmen ergreifen.

Zulässiges dynamisches Moment


 Diese Diagramme zeigen den zulässigen Überhang, wenn der Lastschwerpunkt des Werkstücks einen Überhang in eine Richtung aufweist

Zulässiges dynamisches Moment

Diese Diagramme zeigen den zulässigen Überhang, wenn der Lastschwerpunkt des Werkstücks einen Überhang in eine Richtung aufweist

Berechnung des Belastungsgrads der Führung

1. Bestimmen Sie die Betriebsbedingungen.

Modell: LEFS□G Größe: 25/32/40

Einbaurichtung: Horizontal/Decke/Wand/Vertikal

Beschleunigung [mm/s²]: a

Nutzlast [kg]: m Nutzlast-Mitte [mm]: Xc/Yc/Zc

- 2. Wählen Sie das Ziel-Diagramm unter Berücksichtigung des Modells, der Größe und Einbaulage aus.
- 3. Ermitteln Sie anhand der Beschleunigung und der Nutzlast den Überhang [mm]: Lx/Ly/Lz aus dem Diagramm.
- 4. Berechnen Sie den Lastfaktor für jede Richtung.

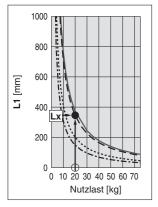
 $\alpha x = Xc/Lx$, $\alpha y = Yc/Ly$, $\alpha z = Zc/Lz$

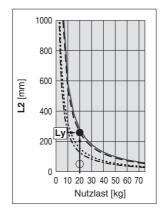
5. Bestätigen Sie, dass der Gesamtwert von αx , αy , und αz 1 oder weniger beträgt. $\alpha x + \alpha y + \alpha z \le 1$

Wenn 1 überschritten wird, ziehen Sie bitte die Verringerung der Beschleunigung und Nutzlast in Betracht oder ändern Sie die Nutzlast-Mitte und die Serie.

Beispiel

1. Betriebsbedingungen Modell: LEFS40G


Größe: 40


Einbaurichtung: horizontal Beschleunigung [mm/s²]: 3000

Nutzlast [kg]: 20

Mittelpunkt der Nutzlast [mm]: Xc = 0, Yc = 50, Zc = 200

2. Wählen Sie die Diagramme für die horizontale Lage des LEFS40G auf Seite 14.

3. Lx = 350 mm, Ly = 250 mm, Lz = 1000 mm

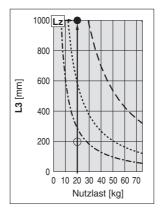
1. Horizontal

2. Decken-

montage

4. Der Lastfaktor für die einzelnen Richtungen wird wie folgt ermittelt. $\alpha x = 0/350 = 0$

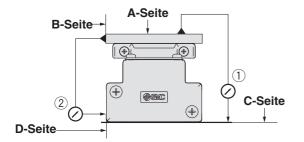
Einbaurichtung

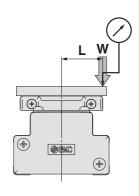

3. Wand

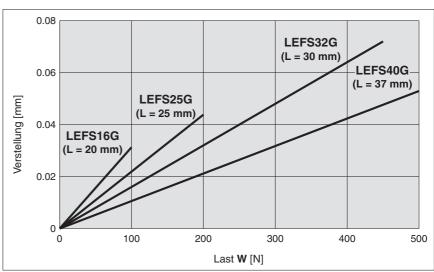
4. Vertikal

 α **y** = 50/250 = 0,2

 $\alpha z = 200/1000 = 0.2$


5. $\alpha x + \alpha y + \alpha z = 0,4 \le 1$

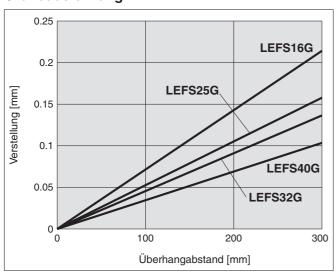

Schlittengenauigkeit (Referenzwert)

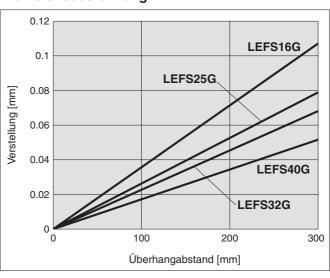


	Lineare Verfahrgenauig	keit [mm] (alle 300 mm)
Modell	① C-Seite zur A-Seite	② D-Seite zur B-Seite
LEFS16G	0,05	0,03
LEFS25G	0,05	0,03
LEFS32G	0,05	0,03
LEFS40G	0,05	0,03

Die Verfahrgenauigkeit berücksichtigt nicht die Genauigkeit der Montageoberfläche.
 (außer bei der Überschreitung eines Hubs von 2000 mm)

Schlittenabweichung (Referenzwert)

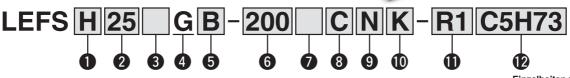



- * Diese Abweichung wird gemessen, wenn eine 15-mm-Aluminiumplatte auf dem Schlitten montiert und befestigt wird.
- * Überprüfen Sie den Spalt und das Spiel der Führung separat.

Überhangverstellung durch Spiel des Schlittens (Referenzwert)

Grundausführung

Präzisionsausführung


Hohe Leistung Schlittenausführung Kugelumlaufspindelantrieb

Serie LEFS ☐ *G* LEFS16, 25, 32, 40

Einzelheiten dazu finden Sie ab Seite 57.

Bestellschlüssel

Einzelheiten zu den Controllern finden Sie auf der nächsten Seite.

1 Präzision

 Grundausführun 	
	ng
H Präzisionsausführu	ıng

2 Baugr

Baugröße
16
25
32
40

4 Motorausführung

	Ontion	Austührung	Verwendbare Baugröße				Kompatible
Option Ausführung		LEFS16	LEFS25	LEFS32	LEFS40	Controller	
	G	Hohe Leistung (Batterieloser Absolut- Encoder)	•	•	•	•	JXC5H JXC6H JXCEH JXC9H JXCPH

3 Motoreinbaulage

_	axial
R	Rechts, parallel
L	Links, parallel

5 Spindelsteigung [mm]

<u> </u>		0 0 1		
Option	LEFS16	LEFS25	LEFS32	LEFS40
Н	_	20	24	30
Α	10	12	16	20
В	5	6	8	10

6 Hub*1[mm]

Hub		Anm.
Пир	Größe	Verwendbarer Hub
50 bis 500	16	50, 100, 150, 200, 250, 300, 350, 400, 450, 500
50 bis 800	25	50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800
50 bis 1000	32	50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000
150 bis 1200	40	150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000, 1100, 1200

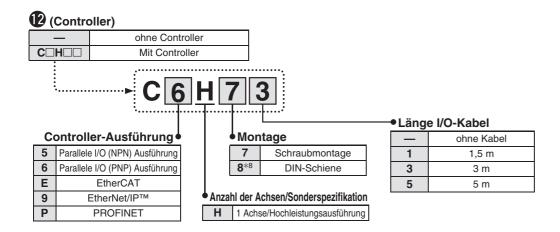
7 Motoroption

_	Ohne Option
В	Mit Verriegelung

8 Kompatibel mit Signalgeber (Nur axial)*2 *3 *4 *5 *6

_	Ohne
С	Mit (enthält 1 Befestigungselement)

9 Fettauftrag (Dichtbandteil)


_	Mit
N	Ohne (Rollenspezifikation)

Antriebskabel-Ausführung/-länge

Pos	10 Positionierstiftbohrung										
_	Unterseite / Gehäusseite B*6	Unterseite Gehäuse B									
К	Gehäuseun- terseite 2 Bohrungen	Gehäuseunterseite									

			_	_
Robotikk	abel			[m]
R1	1,5	RA	10* ⁷	
R3	3	RB	15* ⁷	
R5	5	RC	20*7	
R8	8* ⁷			

- *1 Bitte setzen Sie sich für Hübe, die nicht Standard sind, mit SMC in Verbindung, da diese als Sonderbestellung gefertigt werden.
- *2 Ausgenommen LEFS16
- *3 Wenn mindestens 2 benötigt werden, bestellen Sie diese bitte separat. (Teile-Nr.: LEF-D-2-1 Für Einzelheiten siehe Web-Katalog.)
- *4 Die Signalgeber müssen separat bestellt werden. (Siehe Web-Katalog für Details.)
- *5 Wenn "—" ausgewählt wird, wird das Produkt nicht mit einem eingebauten Magneten für einen Signalgeber geliefert, sodass ein Befestigungselement nicht montiert werden kann. Stellen Sie sicher, dass Sie direkt ein geeignetes Modell auswählen, da das Produkt nach dem Kauf nicht mehr geändert werden kann, um eine Signalgeber-Kompatibilität zu erhalten.
- *6 Einzelheiten zur Montage finden Sie im Web-Katalog.
- *7 Fertigung auf Bestellung
- *8 Die DIN-Schiene ist nicht enthalten. Sie müssen separat bestellt werden.

[CE/UKCA-konforme Produkte]

Die EMV-Konformität wurde durch Kombination des elektrischen Antriebs der Serie LEF und des Controllers der Serie JXC getestet.

Die EMV ist von der Konfiguration der Schalttafel des Kunden und von der Beeinflussung sonstiger elektrischer Geräte und Verdrahtung abhängig. Aus diesem Grund kann die Erfüllung der EMV-Richtlinie nicht für SMC-Bauteile zertifiziert werden, die unter realen Betriebsbedingungen in Kundensystemen integriert sind. Daher muss der Kunde die Erfüllung der EMV-Richtlinie für das Gesamtsystem bestehend aus allen Maschinen und Anlagen überprüfen.

■ Markenzeichen

EtherNet/IP® ist ein eingetragenes Warenzeichen von ODVA, Inc. EtherCAT® ist eine registrierte Handelsmarke und patentierte Technologie, unter Lizenz der Beckhoff Automation GmbH, Deutschland.

* Siehe Betriebsanleitung für die Verwendung der Produkte. Diese können Sie von unserer Webseite: http://www.smc.eu herunterladen.

Ausführung	Schrittdaten- Eingabe	EtherCAT Direkteingangstyp	EtherNet/IP™ Direkteingangstyp	PROFINET Direkteingangstyp
Serie	JXC5H JXC6H	JXCEH	JXC9H	JXCPH
Merkmale	Parallel-I/O	EtherCAT Direkteingang	EtherNet/IP™ Direkteingang	PROFINET Direkteingang
kompatibler Motor		Schrittmot	or 24 VDC	
max. Anzahl der Schrittdaten	_	64 Pı	unkte	
Versorgungsspannung		24 \	/DC	
Details auf Seite	43		50	

Technische Daten

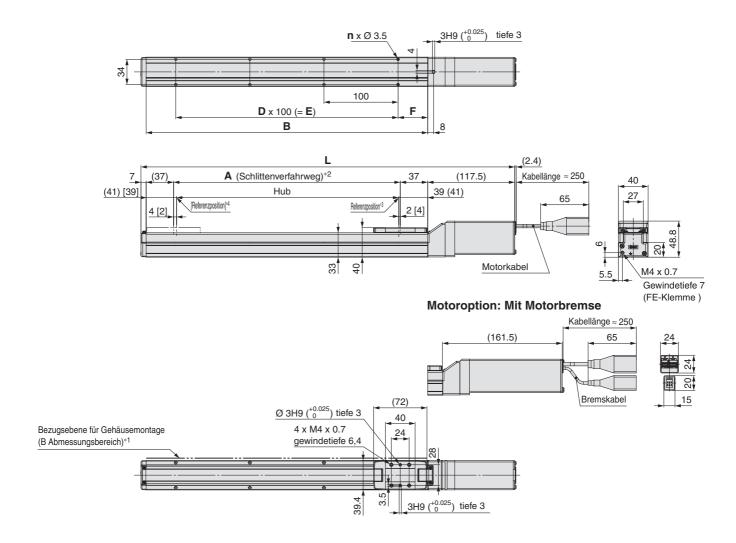
		Modell	Modell LEFS16G LEFS25G		ì		EFS32G	ì	LEFS40G						
Hub	[mm]	*1		50 bis 500 50 bis 800				5	0 bis 1000)	1	50 bis 120	00		
Nutzl		Horizontal		6	15	15	28	40	40	50	68	26	60	75	
[kg]*	*2		Vertikal	3	6	3	7,5	15	4	10	18	4,5	4,5	25	
			Bis 400	10 bis 800	5 bis 400	20 bis 1500	12 bis 900	6 bis 500	24 bis 1300	16 bis 1000	8 bis 500	30 bis 1200	20 bis 1000	10 bis 500	
			401 bis 450	10 bis 700	5 bis 360	20 bis 1100	12 bis 750	6 bis 400	24 bis 1300	16 bis 950	8 bis 500	30 bis 1200	20 bis 1000	10 bis 500	
			451 bis 500	10 bis 600	5 bis 300	20 bis 1100	12 bis 750	6 bis 400	24 bis 1300	16 bis 950	8 bis 500	30 bis 1200	20 bis 1000	10 bis 500	
			501 bis 600	_	_	20 bis 900	12 bis 540	6 bis 270	24 bis 1200	16 bis 800	8 bis 400	30 bis 1200	20 bis 1000	10 bis 500	
Gesch		Hubberei	601 bis 700	_	_	20 bis 630	12 bis 420	6 bis 230	24 bis 930	16 bis 620	8 bis 310	30 bis 1200	20 bis 900	10 bis 440	
ſmm	digkeit Hubbereid	701 bis 800	_	_	20 bis 550	12 bis 330	6 bis 180	24 bis 750	16 bis 500	8 bis 250	30 bis 1140	20 bis 760	10 bis 350		
SQ:			801 bis 900	_	_	_	_	_	24 bis 610	16 bis 410	8 bis 200	30 bis 930	20 bis 620	10 bis 280	
<u> </u>			901 bis 1000	_	_	_	_	_	24 bis 500	16 bis 340	8 bis 170	30 bis 780	20 bis 520	10 bis 250	
des Antriebs			1001 bis 1100	_	_	_	_	_	_	_	_	30 bis 660	20 bis 440	10 bis 220	
des			1101 bis 1200	_	_	_	_	_	_	_	_	30 bis 570	20 bis 380	10 bis 190	
max. f		leunigun							10000						
max. I Verzög Positi holge Hyste Umke	ögerun	g [mm/s ²]							5000						
은 Positi		wieder-	Grundausführung		±0,02										
holge	holgenauigkeit [mm] Präzisionsausführung				±0,015 (Steigung H: ±0,02)										
ਨੂੰ Hyste	terese		Grundausführung	max. 0,1											
		el [mm]*			max. 0,05										
		eigung [10	5	20	12	6	24	16	8	30	20	10	
			stigkeit [m/s ²]*4	50/20											
	ktions			Spindelantrieb (LEFS \square), Spindelantrieb + Riemen (LEFS \square^R_L)											
Führ	rungsa							Li	nearführur						
	issige		p (Kippbewegung)		0		27		46			110			
	ische nente*		y (Gierbewegung)		0		27			46		110			
		IVIC	r (Rollbewegung)	2	0		52			101			207		
			rbereich [°C]					"	5 bis 40						
		-	ereich [%RH]			1		max. 90 (I	keine Kond			I			
Moto Moto Enco Verso max.	orgröß				□28 □42 □56,4 □56,4 Schrittmotor 24 VDC, batterieloser Absolut-Encoder										
Moto Enco Verso		ührung					Schrittmot		·		ıt-Encodei	r			
Enco									ser Absolu						
Verso	Versorgungsspannung [V]							24	VDC ±10						
				1	16		126			222			222		
Ausfi Halte						47			sfreie Funk			7-	110	0.45	
Halte Leist	ekraft		- F14/1*8	29	59	47	78	157	72	108	216	75	113	245	
Leist Nenn			ne [W]*8	2	,9		5		 	5			5		
		nung [V] ür Hübe. die nich						VDC ±10						

- *1 Bitte setzen Sie sich für Hübe, die nicht Standard sind, mit SMC in Verbindung, da diese als Sonderbestellung gefertigt werden.
- *2 Die maximale Nutzlast bei 3000 mm/s² Beschleunigung und Verzögerung. Die Geschwindigkeit, die Beschleunigung und die Einschaltdauer in Abhängigkeit von der Nutzlast entnehmen Sie bitte dem "Geschwindigkeits-Nutzlast-Diagramm" auf den Seiten 10 bis 13. Wenn die Kabellänge mehr als 5 m beträgt, kann sich außerdem die im "Geschwindigkeits-/Nutzlast-Diagramm" angegebene Geschwindigkeit und Nutzlast um bis zu 10 % je 5 m Längenzunahme verringern.
- *3 Referenzwert zur Korrektur eines Fehlers im Umkehrbetrieb
- *4 Stoßfestigkeit: Keine Fehlfunktion im Fallversuch des Antriebes in axialer und senkrechter Richtung zur Gewindespindel. (Der Versuch erfolgte mit dem Zylinder in Startphase.)
 - Vibrationsfestigkeit: Keine Fehlfunktion im versuch von 45 bis 2000 Hz. Der Fallversuch wurde sowohl in axialer als auch in vertikaler Richtung zur Gewindespindel durchgeführt. (Der Versuch erfolgte mit dem Zylinder in Startphase.)
- *5 Das zulässige statische Moment ist der Wert des statischen Moments, das auf den Antrieb einwirken kann, wenn er angehalten wird. Wenn das Produkt Stößen oder wiederholten Lasten ausgesetzt wird, müssen Sie bei der Verwendung des Produkts angemessene Sicherheitsmaßnahmen ergreifen.
- *6 ZDie maximale Leistungsaufnahme (einschließlich Controller) gilt, wenn der Antrieb in Betrieb ist. Dieser Wert kann für die Wahl der Spannungsversorgung verwendet werden.
- *7 Nur mit Motorbremse
- *8 Für einen Antrieb mit Motorbremse muss die Leistungsaufnahme für die Motorbremse hinzugerechnet werden.

Gewicht

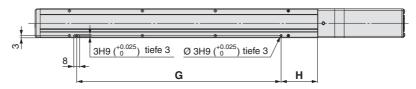
Serie					LEFS	S16G				
Hub [mm]	50	100	150	200	250	300	350	400	450	500
Masse [kg]	0,85	0,92	1,00	1,07	1,15	1,22	1,30	1,37	1,45	1,52
Zusätzliches Gewicht mit Verriegelung [kg]					0,	12				

Serie		LEFS25G														
Hub [mm]	50	100	150	200	250	300	350	400	450	500	550	600	650	700	750	800
Masse [kg]	1,70	1,84	1,98	2,12	2,26	2,40	2,54	2,68	2,82	2,96	3,10	3,24	3,38	3,52	3,66	3,80
Zusätzliches Gewicht mit Verriegelung [kg]		0,26														


Serie		LEFS32G																		
Hub [mm]	50	100	150	200	250	300	350	400	450	500	550	600	650	700	750	800	850	900	950	1000
Masse [kg]	3,55	3,75	3,95	4,15	4,35	4,55	4,75	4,95	5,15	5,35	5,55	5,75	5,95	6,15	6,35	6,55	6,75	6,95	7,15	7,35
Zusätzliches Gewicht mit Verriegelung [kg]											0,5	3								

Serie		LEFS40G																		
Hub [mm]	150	200	250	300	350	400	450	500	550	600	650	700	750	800	850	900	950	1000	1100	1200
Masse [kg]	5,37	5,65	5,93	6,21	6,49	6,77	7,15	7,33	7,61	7,89	8,17	8,45	8,73	9,01	9,29	9,57	9,85	10,13	10,69	11,25
Zusätzliches Gewicht mit Verriegelung [kg]											0,5	3								

LEFS16G

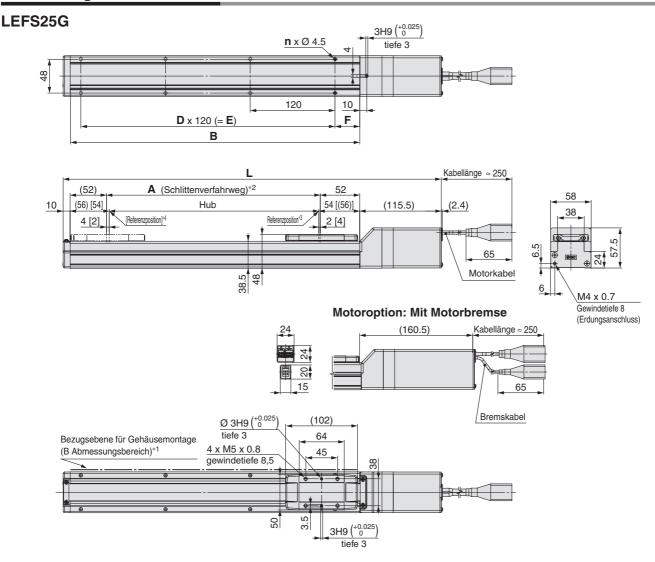

- *1 Bei der Montage des Antriebs unter Verwendung der Bezugsebene für die Gehäusemontage, muss die Höhe der gegenüberliegenden Fläche oder des Stifts aufgrund der Profilausführung mindestens 2 mm betragen. (Empfohlene Höhe: 5 mm)

 Beachten Sie zudem, dass andere Flächen als die Gehäusemontage-Bezugsebene (Abmessungsbereich B) leicht aus der Gehäusemontage-Bezugsebene überstehen können. Achten Sie darauf, einen Spalt von 1 mm oder mehr vorzusehen, um Berührungen mit Werkstücken, der Ausrüstung usw. zu vermeiden.
- *2 Dies ist der Abstand, innerhalb dessen sich der Schlitten bewegen kann, wenn er zur Ausgangsposition zurückkehrt. Stellen Sie sicher, dass die auf dem Schlitten montierten Werkstücke andere Werkstücke oder die umliegenden Anlagen nicht beeinträchtigen.
- *3 Position nach der Rückkehr zur Referenzposition
- *4 Der Wert in [] zeigt an, wenn die Referenzierrichtung geändert wurde

Abmessungen								[mm]
Modell	L	L			n	D	Е	F
Wodeli	Ohne Verriegelung	Mit Verriegelung	Α	В	"		_	•
LEFS16G□-50□	254,5	298,5	56	130				15
LEFS16G□-100□	304,5	348,5	106	180	4	—	_	
LEFS16G□-150□	354,5	398,5	156	230				
LEFS16G□-200□	404,5	448,5	206	280	6	2	200	
LEFS16G□-250□	454,5	498,5	256	330	0			
LEFS16G□-300□	504,5	548,5	306	380	8	3	300	40
LEFS16G□-350□	554,5	598,5	356	430	0	3	300	
LEFS16G□-400□	604,5	648,5	406	480	10	4	400	
LEFS16G□-450□	654,5	698,5	456	530	10	4	400	
LEFS16G□-500□	704,5	748,5	506	580	12	5	500	

LEFS16G

Bohrungen für Passstifte an der Gehäuseunterseite*1 (Option)



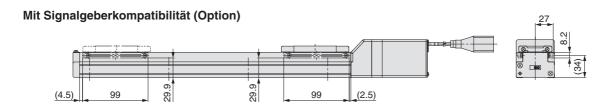
*1 Bei Verwendung der Positionierstiftbohrung für die Gehäuseunterseite nicht gleichzeitig die Stiftbohrung an der Unterseite des Gehäuse B benutzen.

Abmessungen		[mm]			
Modell	Passstiftbohrung: K				
Modeli	G	Н			
LEFS16G□-50□		25			
LEFS16G□-100□	80				
LEFS16G□-150□					
LEFS16G□-200□	180				
LEFS16G□-250□	100				
LEFS16G□-300□	280	50			
LEFS16G□-350□	200				
LEFS16G□-400□	380				
LEFS16G□-450□	380				
LEFS16G□-500□	480				

- *1 Bei der Montage des Antriebs unter Verwendung der Bezugsebene für die Gehäusemontage muss die Höhe der gegenüberliegenden Fläche oder des Stifts aufgrund der Profilausführung mindestens 3 mm betragen. (Empfohlene Höhe: 5 mm)

 Beachten Sie zudem, dass andere Flächen als die Gehäusemontage-Bezugsebene (Abmessungsbereich B) leicht aus der Gehäusemontage-Bezugsebene überstehen können. Achten Sie darauf, einen Spalt von 1 mm oder mehr vorzusehen, um Berührungen mit Werkstücken, der Ausrüstung usw. zu vermeiden.
- *2 Dies ist der Abstand, innerhalb dessen sich der Schlitten bewegen kann, wenn er zur Ausgangsposition zurückkehrt. Stellen Sie sicher, dass die auf dem Schlitten montierten Werkstücke andere Werkstücke oder die umliegenden Anlagen nicht beeinträchtigen.
- *3 Position nach der Rückkehr zur Referenzposition
- *4 Der Wert in [] zeigt an, wenn die Referenzierrichtung geändert wurde

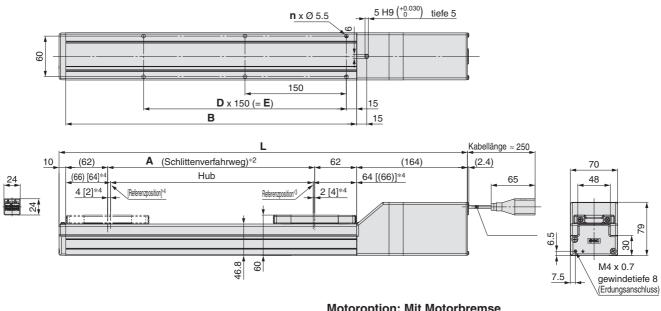
geandert wurde								
Abmessungen								[mm]
Modell			Α	В	n	D	Е	F
	Ohne Verriegelung	Mit Verriegelung	- ' '					•
LEFS25G□-50□	285,5	330,5	56	160				20
LEFS25G□-100□	335,5	380,5	106	210	4	_	—	
LEFS25G□-150□	385,5	430,5	156	260				ĺ
LEFS25G□-200□	435,5	480,5	206	310	6	2	240	
LEFS25G□-250□	485,5	530,5	256	360	0		240	
LEFS25G□-300□	535,5	580,5	306	410			360	
LEFS25G□-350□	585,5	630,5	356	460	8	3		
LEFS25G□-400□	635,5	680,5	406	510				
LEFS25G□-450□	685,5	730,5	456	560	10	4	480	35
LEFS25G□-500□	735,5	780,5	506	610	10	†	400	
LEFS25G□-550□	785,5	830,5	556	660				
LEFS25G□-600□	835,5	880,5	606	710	12	5	600	
LEFS25G□-650□	885,5	930,5	656	760				
LEFS25G□-700□	935,5	980,5	706	810	14	6	720	
LEFS25G□-750□	985,5	1030,5	756	860	14	U	120	
LEFS25G□-800□	1035,5	1080,5	806	910	16	7	840	



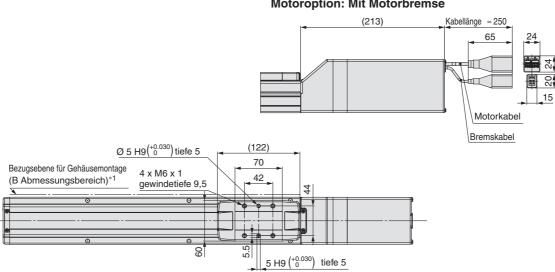
LEFS25G

Bohrungen für Passstifte an Gehäuseunterseite*1 (Option)

*1 Bei Verwendung der Positionierstiftbohrung für die Gehäuseunterseite nicht gleichzeitig die Stiftbohrung an der Unterseite des Gehäuse B benutzen.

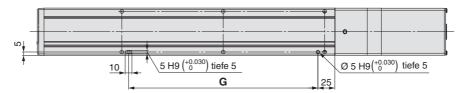


* Bei Hüben von 99 mm oder weniger können nur 2 motorseitige Signalgeber-Montagewinkel installiert werden.

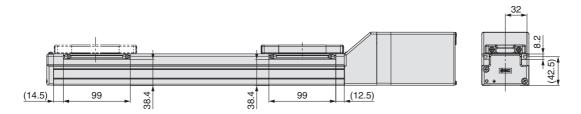

Abmessungen		[mm]				
Modell	G	Н				
LEFS25G□-50□		30				
LEFS25G□-100□	100					
LEFS25G□-150□						
LEFS25G□-200□	220					
LEFS25G□-250□	220					
LEFS25G□-300□						
LEFS25G□-350□	340					
LEFS25G□-400□						
LEFS25G□-450□	460	45				
LEFS25G□-500□	400					
LEFS25G□-550□						
LEFS25G□-600□	580					
LEFS25G□-650□						
LEFS25G□-700□	700					
LEFS25G□-750□	700					
LEFS25G□-800□	820					

LEFS32G

Motoroption: Mit Motorbremse


- *1 Wenn Sie den Antrieb unter Verwendung der Bezugsebene für Gehäusemontage montieren, sollte die Höhe der Bezugsebene bzw. der Stifte min. 3mm sein. (Empfohlene Höhe: 5 mm)
 - Beachten Sie zudem, dass andere Flächen als die Gehäusemontage-Bezugsebene (Abmessungsbereich B) leicht aus der Gehäusemontage-Bezugsebene überstehen können. Achten Sie darauf, einen Spalt von 1 mm oder mehr vorzusehen, um Berührungen mit Werkstücken, der Ausrüstung usw. zu vermeiden.
- *2 Dies ist der Abstand, innerhalb dessen sich der Schlitten bewegen kann, wenn er zur Ausgangsposition zurückkehrt. Stellen Sie sicher, dass die auf dem Schlitten montierten Werkstücke andere Werkstücke oder die umliegenden Anlagen nicht beeinträchtigen.
- *3 Position nach der Rückkehr zur Referenzposition
- *4 Der Wert in [] zeigt an, wenn die Referenzierrichtung geändert wurde

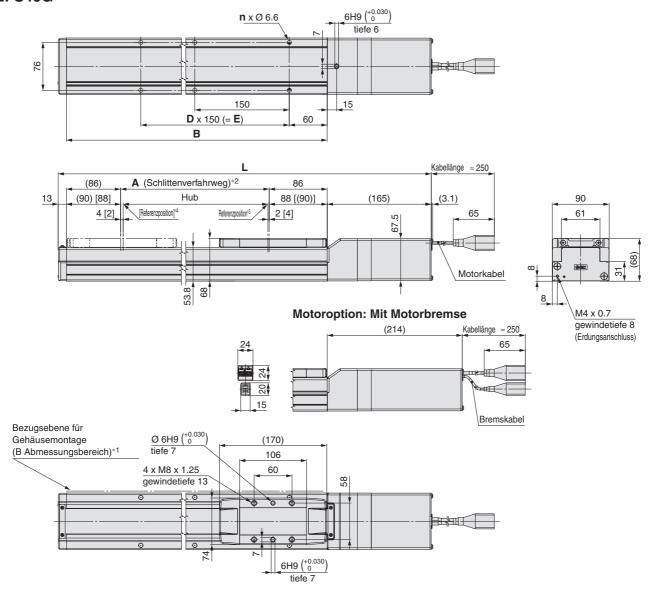
Abmessungen							[mm]
Modell	L		Α	В	n	D	Е
	Ohne Verriegelung	Mit Verriegelung					
LEFS32G□-50□	354	403	56	180			
LEFS32G□-100□	404	453	106	230	4	—	_
LEFS32G□-150□	454	503	156	280			
LEFS32G□-200□	504	553	206	330			
LEFS32G□-250□	554	603	256	380	6	2	300
LEFS32G□-300□	604	653	306	430			
LEFS32G□-350□	654	703	356	480			
LEFS32G□-400□	704	753	406	530	8	3	450
LEFS32G□-450□	754	803	456	580			
LEFS32G□-500□	804	853	506	630			
LEFS32G□-550□	854	903	556	680	10	4	600
LEFS32G□-600□	904	953	606	730			
LEFS32G□-650□	954	1003	656	780			
LEFS32G□-700□	1004	1053	706	830	12	5	750
LEFS32G□-750□	1054	1103	756	880			
LEFS32G□-800□	1104	1153	806	930			
LEFS32G□-850□	1154	1203	856	980	14	6	900
LEFS32G□-900□	1204	1253	906	1030			
LEFS32G□-950□	1254	1303	956	1080	16	7	1050
LEFS32G□-1000□	1304	1353	1006	1130	10		1050


LEFS32G

Bohrungen für Passstifte an Gehäuseunterseite*1 (Option)

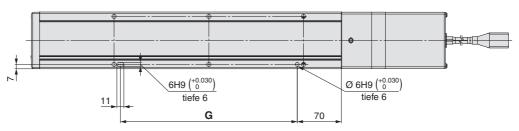
*1 Bei Verwendung der Positionierstiftbohrung für die Gehäuseunterseite nicht gleichzeitig die Stiftbohrung an der Unterseite des Gehäuse B benutzen.

Mit Signalgeberkompatibilität (Option)

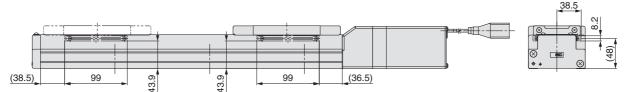

* Bei Hüben von 99 mm oder weniger können nur 2 motorseitige Signalgeber-Montagewinkel installiert werden.

Abmessungen	[mm]
Modell	G
LEFS32G□-50□	
LEFS32G□-100□	130
LEFS32G□-150□	
LEFS32G□-200□	
LEFS32G□-250□	280
LEFS32G□-300□	
LEFS32G□-350□	
LEFS32G□-400□	430
LEFS32G□-450□	
LEFS32G□-500□	
LEFS32G□-550□	580
LEFS32G□-600□	
LEFS32G□-650□	
LEFS32G□-700□	730
LEFS32G□-750□	
LEFS32G□-800□	
LEFS32G□-850□	880
LEFS32G□-900□	
LEFS32G□-950□	1030
LEFS32G□-1000□	1030

LEFS40G

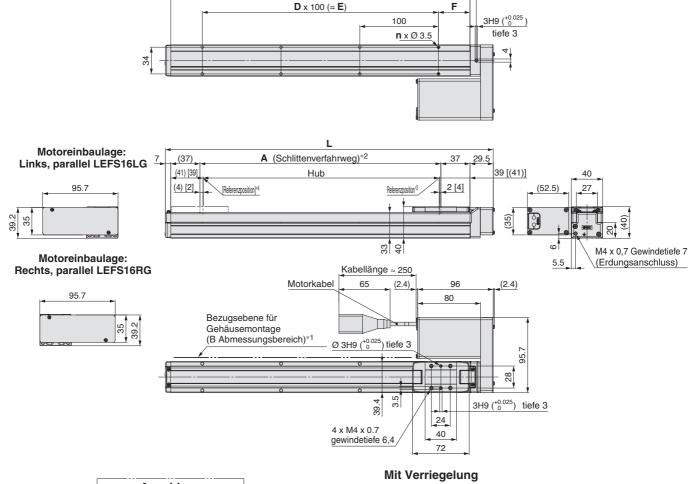

- *1 Bei der Montage des Antriebs unter Verwendung der Bezugsebene für die Gehäusemontage muss die Höhe der gegenüberliegenden Fläche oder des Stifts aufgrund der Profilausführung mindestens 3 mm betragen. (Empfohlene Höhe: 5 mm)
 - Beachten Sie zudem, dass andere Flächen als die Gehäusemontage-Bezugsebene (Abmessungsbereich B) leicht aus der Gehäusemontage-Bezugsebene überstehen können. Achten Sie darauf, einen Spalt von 1 mm oder mehr vorzusehen, um Berührungen mit Werkstücken, der Ausrüstung usw. zu vermeiden.
- *2 Dies ist der Abstand, innerhalb dessen sich der Schlitten bewegen kann, wenn er zur Ausgangsposition zurückkehrt. Stellen Sie sicher, dass die auf dem Schlitten montierten Werkstücke andere Werkstücke oder die umliegenden Anlagen nicht beeinträchtigen.
- *3 Position nach der Rückkehr zur Referenzposition
- *4 Der Wert in [] zeigt an, wenn die Referenzierrichtung geändert wurde

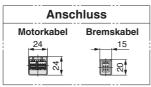
Abmessungen							[mm]
Modell	Ohne Verriegelung	Mit Verriegelung	Α	В	n	D	Е
LEFS40G□-150□	506	555	156	328	4	$\overline{}$	150
LEFS40G□-200□	556	605	206	378			
LEFS40G□-250□	606	655	256	428	6	2	300
LEFS40G□-300□	656	705	306	478			
LEFS40G□-350□	706	755	356	528			
LEFS40G□-400□	756	805	406	578	8	3	450
LEFS40G□-450□	806	855	456	628			
LEFS40G□-500□	856	905	506	678		4	
LEFS40G□-550□	906	955	556	728	10		600
LEFS40G□-600□	956	1005	606	778			
LEFS40G□-650□	1006	1055	656	828			
LEFS40G□-700□	1056	1105	706	878	12	5	750
LEFS40G□-750□	1106	1155	756	928			
LEFS40G□-800□	1156	1205	806	978			
LEFS40G□-850□	1206	1255	856	1028	14	6	900
LEFS40G□-900□	1256	1305	906	1078			
LEFS40G□-950□	1306	1355	956	1128	16	7	1050
LEFS40G□-1000□	1356	1405	1006	1178	10	L	1030
LEFS40G□-1100□	1456	1505	1106	1278	18	8	1200
LEFS40G□-1200□	1556	1605	1206	1378	10	٥	1200

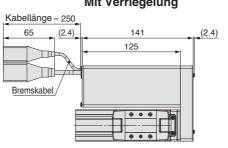

LEFS40G

Bohrungen für Passstifte an Gehäuseunterseite*1 (Option)

*1 Bei Verwendung der Positionierstiftbohrung für die Gehäuseunterseite nicht gleichzeitig die Stiftbohrung an der Unterseite des Gehäuse B benutzen.

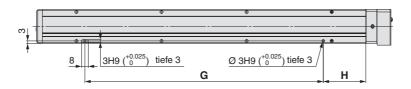

Mit Signalgeberkompatibilität (Option)


Abmessungen	[mm]
Modell	G
LEFS40G□-150□	130
LEFS40G□-200□	
LEFS40G□-250□	280
LEFS40G□-300□	
LEFS40G□-350□	
LEFS40G□-400□	430
LEFS40G□-450□	
LEFS40G□-500□	
LEFS40G□-550□	580
LEFS40G□-600□	
LEFS40G□-650□	
LEFS40G□-700□	730
LEFS40G□-750□	
LEFS40G□-800□	
LEFS40G□-850□	880
LEFS40G□-900□	
LEFS40G□-950□	1030
LEFS40G□-1000□	
LEFS40G□-1100□	1180
LEFS40G□-1200□	



LEFS16RG

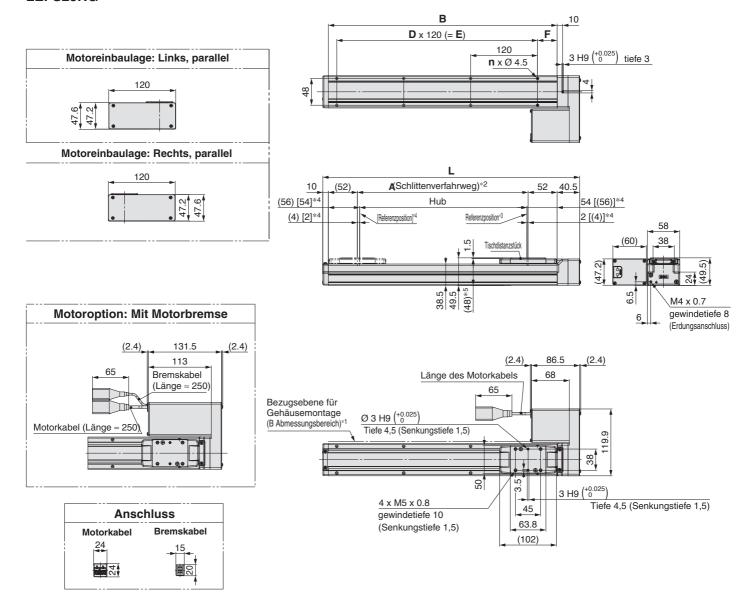
В


- *1 Bei der Montage des Antriebs unter Verwendung der Bezugsebene für die Gehäusemontage muss die Höhe der gegenüberliegenden Fläche oder des Stifts aufgrund der Profilausführung mindestens 2 mm betragen. (Empfohlene Höhe: 5 mm)
 - Beachten Sie zudem, dass andere Flächen als die Gehäusemontage-Bezugsebene (Abmessungsbereich B) leicht aus der Gehäusemontage-Bezugsebene überstehen können. Achten Sie darauf, einen Spalt von 1 mm oder mehr vorzusehen, um Berührungen mit Werkstücken, der Ausrüstung usw. zu vermeiden.
- *2 Dies ist der Abstand, innerhalb dessen sich der Schlitten bewegen kann, wenn er zur Ausgangsposition zurückkehrt. Stellen Sie sicher, dass die auf dem Schlitten montierten Werkstücke andere Werkstücke oder die umliegenden Anlagen nicht beeinträchtigen.
- *3 Position nach der Rückkehr zur Referenzposition
- *4 Der Wert in [] zeigt an, wenn die Referenzierrichtung geändert wurde

Abmessungen							[mm]
Modell	L	Α	В	n	D	Е	F
LEFS16□G□-50□	166,5	56	130				15
LEFS16□G□-100□	216,5	106	180	4	_	_	
LEFS16□G□-150□	266,5	156	230				
LEFS16□G□-200□	316,5	206	280	6	2	200	
LEFS16□G□-250□	366,5	256	330	0		200	
LEFS16□G□-300□	416,5	306	380	8	3	300	40
LEFS16□G□-350□	466,5	356	430	0	3	300	
LEFS16□G□-400□	516,5	406	480	10	4	400	
LEFS16□G□-450□	566,5	456	530	10	4	400	
LEFS16□G□-500□	616,5	506	580	12	5	500	

LEFS16RG

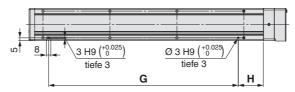
Bohrungen für Passstifte an Gehäuseunterseite*1 (Option)


*1 Bei Verwendung der Positionierstiftbohrung für die Gehäuseunterseite nicht gleichzeitig die Stiftbohrung an der Unterseite des Gehäuse B benutzen.

Abmessungen		[mm]			
Modell	Passstiftbohrung: K				
Modell	G	Н			
LEFS16□G□-50□		25			
LEFS16□G□-100□	80				
LEFS16□G□-150□					
LEFS16□G□-200□	100				
LEFS16□G□-250□	180				
LEFS16□G□-300□	000	50			
LEFS16□G□-350□	280				
LEFS16□G□-400□	380				
LEFS16□G□-450□	360				
LEFS16□G□-500□	480				

LEFS25RG

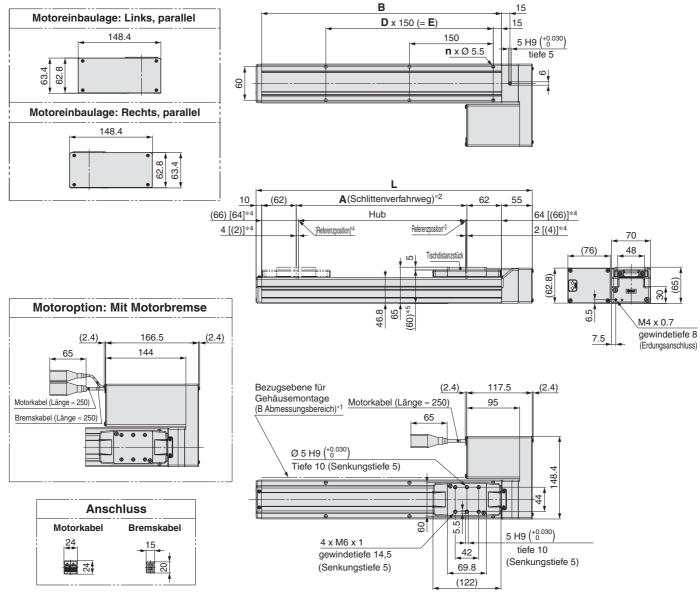
- *1 Wenn Sie den Antrieb unter Verwendung der Bezugsebene für Gehäusemontage montieren, sollte die Höhe der Bezugsebene bzw. der Stifte min. 3mm sein. (Empfohlene Höhe: 5 mm)
 - Beachten Sie zudem, dass andere Flächen als die Gehäusemontage-Bezugsebene (Abmessungsbereich B) leicht aus der Gehäusemontage-Bezugsebene überstehen können. Achten Sie darauf, einen Spalt von 1 mm oder mehr vorzusehen, um Berührungen mit Werkstücken, der Ausrüstung usw. zu vermeiden.
- *2 Dies ist der Abstand, innerhalb dessen sich der Schlitten bewegen kann, wenn er zur Ausgangsposition zurückkehrt.
- Stellen Sie sicher, dass die auf dem Schlitten montierten Werkstücke andere Werkstücke oder die umliegenden Anlagen nicht beeinträchtigen.
- *3 Position nach der Rückkehr zur Referenzposition
- *4 Der Wert in [] zeigt an, wenn die Referenzierrichtung geändert wurde
- *5 Wenn das Distanzstück des Schlittens entfernt wird


Abmessungen							[mm]
Modell	L	Α	В	n	D	E	F
LEFS25□G□-50□	210,5	56	160				20
LEFS25□G□-100□	260,5	106	210	4	—	_	
LEFS25□G□-150□	310,5	156	260				
LEFS25□G□-200□	360,5	206	310	6	2	240	
LEFS25□G□-250□	410,5	256	360	0	~	240	35
LEFS25□G□-300□	460,5	306	410				
LEFS25□G□-350□	510,5	356	460	8	3	360	
LEFS25□G□-400□	560,5	406	510				

Abmessungen							[mm]
Modell	L	Α	В	n	D	Е	F
LEFS25□G□-450□	610,5	456	560	10	4	480	35
LEFS25□G□-500□	660,5	506	610	10			
LEFS25□G□-550□	710,5	556	660	12	5	600	
LEFS25□G□-600□	760,5	606	710				
LEFS25□G□-650□	810,5	656	760				
LEFS25□G□-700□	860,5	706	810	14	6	720	
LEFS25□G□-750□	910,5	756	860		0		
LEFS25□G□-800□	960,5	806	910	16	7	840	

LEFS25RG

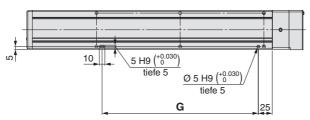
Bohrungen für Passstifte an Gehäuseunterseite*1 (Option)


*1 Bei Verwendung der Positionierstiftbohrung für die Gehäuseunterseite nicht gleichzeitig die Stiftbohrung an der Unterseite des Gehäuse B benutzen.

Abmessungen		[mm]	
Modell	G	Н	
LEFS25□G□-50□		30	
LEFS25□G□-100□	100		
LEFS25□G□-150□			
LEFS25□G□-200□	220		
LEFS25□G□-250□	220		
LEFS25□G□-300□			
LEFS25□G□-350□	340		
LEFS25□G□-400□			
LEFS25□G□-450□	460	45	
LEFS25□G□-500□	460		
LEFS25□G□-550□			
LEFS25□G□-600□	580		
LEFS25□G□-650□			
LEFS25□G□-700□	700		
LEFS25□G□-750□	700		
LEFS25□G□-800□	820		

LEFS32RG

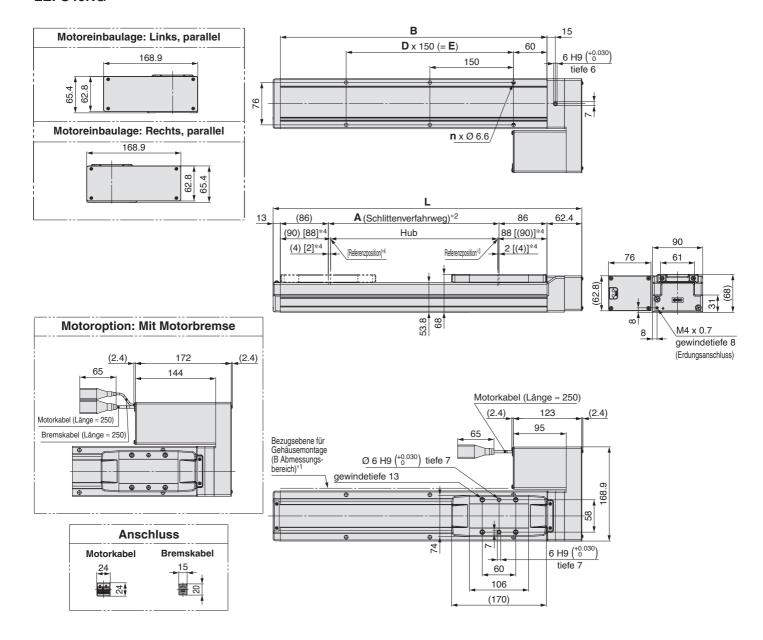
- *1 Wenn Sie den Antrieb unter Verwendung der Bezugsebene für Gehäusemontage montieren, sollte die Höhe der Bezugsebene bzw. der Stifte min. 3mm sein. (Empfohlene Höhe: 5 mm)
 - Beachten Sie zudem, dass andere Flächen als die Gehäusemontage-Bezugsebene (Abmessungsbereich B) leicht aus der Gehäusemontage-Bezugsebene überstehen können. Achten Sie darauf, einen Spalt von 1 mm oder mehr vorzusehen, um Berührungen mit Werkstücken, der Ausrüstung usw. zu vermeiden.
- *2 Dies ist der Abstand, innerhalb dessen sich der Schlitten bewegen kann, wenn er zur Ausgangsposition zurückkehrt. Stellen Sie sicher, dass die auf dem Schlitten montierten Werkstücke andere Werkstücke oder die umliegenden Anlagen nicht beeinträchtigen.
- *3 Position nach der Rückkehr zur Referenzposition
- *4 Der Wert in [] zeigt an, wenn die Referenzierrichtung geändert wurde
- *5 Wenn das Distanzstück des Schlittens entfernt wird


Abmessungen						[mm]
Modell	L	Α	В	n	D	E
LEFS32□G□-50□	245	56	180			
LEFS32□G□-100□	295	106	230	4	-	_
LEFS32□G□-150□	345	156	280			
LEFS32□G□-200□	395	206	330	6	2	300
LEFS32□G□-250□	445	256	380			
LEFS32□G□-300□	495	306	430			
LEFS32□G□-350□	545	356	480			
LEFS32□G□-400□	595	406	530	8	3	450
LEFS32□G□-450□	645	456	580			
LEFS32□G□-500□	695	506	630	10	4	600

Abmessungen						[mm]
Modell	L	Α	В	n	D	E
LEFS32□G□-550□	745	556	680	10	4	600
LEFS32□G□-600□	795	606	730	10	4	000
LEFS32□G□-650□	845	656	780			
LEFS32□G□-700□	895	706	830	12	5	750
LEFS32□G□-750□	945	756	880			
LEFS32□G□-800□	995	806	930			
LEFS32□G□-850□	1045	856	980	14	6	900
LEFS32□G□-900□	1095	906	1030			
LEFS32□G□-950□	1145	956	1080	16	7	1050
LEFS32□G□-1000□	1195	1006	1130	16	/	1050

LEFS32RG

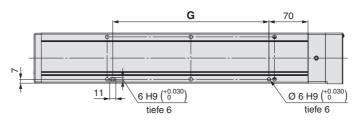
Bohrungen für Passstifte an Gehäuseunterseite*1 (Option)


*1 Bei Verwendung der Positionierstiftbohrung für die Gehäuseunterseite nicht gleichzeitig die Stiftbohrung an der Unterseite des Gehäuse B benutzen.

Abmessungen	[mm]
Modell	G
LEFS32□G□-50□	
LEFS32□G□-100□	130
LEFS32□G□-150□	
LEFS32□G□-200□	
LEFS32□G□-250□	280
LEFS32□G□-300□	
LEFS32□G□-350□	
LEFS32□G□-400□	430
LEFS32□G□-450□	
LEFS32□G□-500□	
LEFS32□G□-550□	580
LEFS32□G□-600□	
LEFS32□G□-650□	
LEFS32□G□-700□	730
LEFS32□G□-750□	
LEFS32□G□-800□	
LEFS32□G□-850□	880
LEFS32□G□-900□	
LEFS32□G□-950□	1030
LEFS32□G□-1000□	1030

LEFS40RG

- *1 Wenn Sie den Antrieb unter Verwendung der Bezugsebene für Gehäusemontage montieren, sollte die Höhe der Bezugsebene bzw. der Stifte min. 3mm sein. (Empfohlene Höhe: 5 mm)
 - Beachten Sie zudem, dass andere Flächen als die Gehäusemontage-Bezugsebene (Abmessungsbereich B) leicht aus der Gehäusemontage-Bezugsebene überstehen können. Achten Sie darauf, einen Spalt von 1 mm oder mehr vorzusehen, um Berührungen mit Werkstücken, der Ausrüstung usw. zu vermeiden.
- *2 Dies ist der Abstand, innerhalb dessen sich der Schlitten bewegen kann, wenn er zur Ausgangsposition zurückkehrt. Stellen Sie sicher, dass die auf dem Schlitten montierten Werkstücke andere Werkstücke oder die umliegenden Anlagen nicht beeinträchtigen.
- *3 Position nach der Rückkehr zur Referenzposition
- *4 Der Wert in [] zeigt an, wenn die Referenzierrichtung geändert wurde

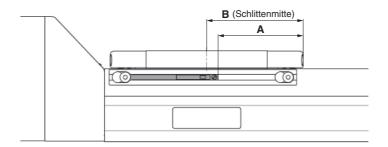

Abmessungen						[mm]
Modell	L	Α	В	n	D	Е
LEFS40□G□-150□	403,4	156	328	4	_	_
LEFS40□G□-200□	453,4	206	378			
LEFS40□G□-250□	503,4	256	428	6	2	300
LEFS40□G□-300□	553,4	306	478			
LEFS40□G□-350□	603,4	356	528			
LEFS40□G□-400□	653,4	406	578	8	3	450
LEFS40□G□-450□	703,4	456	628			
LEFS40□G□-500□	753,4	506	678			
LEFS40□G□-550□	803,4	556	728	10	4	600
LEFS40□G□-600□	853,4	606	778			

Abmessungen						[mm]
Modell	L	Α	В	n	D	E
LEFS40□G□-650□	903,4	656	828			
LEFS40□G□-700□	953,4	706	878	12	5	750
LEFS40□G□-750□	1003,4	756	928			
LEFS40□G□-800□	1053,4	806	978			
LEFS40□G□-850□	1103,4	856	1028	14	6	900
LEFS40□G□-900□	1153,4	906	1078			
LEFS40□G□-950□	1203,4	956	1128	16	7	1050
LEFS40□G□-1000□	1253,4	1006	1178	16	/	1050
LEFS40□G□-1100□	1353,4	1106	1278	18	0	1000
LEFS40□G□-1200□	1453,4	1206	1378	10	8	1200

Abmessungen: paralleler Motor

LEFS40RG

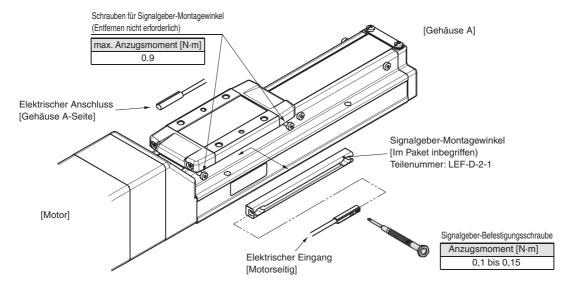
Bohrungen für Passstifte an Gehäuseunterseite*1 (Option)


*1 Bei Verwendung der Positionierstiftbohrung für die Gehäuseunterseite nicht gleichzeitig die Stiftbohrung an der Unterseite des Gehäuse B benutzen.

Abmessungen	[mm]
Modell	G
LEFS40□G□-150□	130
LEFS40□G□-200□	
LEFS40□G□-250□	280
LEFS40□G□-300□	
LEFS40□G□-350□	
LEFS40□G□-400□	430
LEFS40□G□-450□	
LEFS40□G□-500□	
LEFS40□G□-550□	580
LEFS40□G□-600□	
LEFS40□G□-650□	
LEFS40□G□-700□	730
LEFS40□G□-750□	
LEFS40□G□-800□	
LEFS40□G□-850□	880
LEFS40□G□-900□	
LEFS40□G□-950□	1000
LEFS40□G□-1000□	1030
LEFS40□G□-1100□	1100
LEFS40□G□-1200□	1180

Serie LEFS□G Signalgebermontage

Signalgeber-Einbauposition


				[111111]
Modell	Größe	Α	В	Betriebsbereich
	25	45	51	4,9
LEFS□G	32	55	61	3,9
	40	79	85	5,3

- * Der verwendbare Signalgeber ist D-M9 (N/P/B) (W) (M/L/Z).
- * Beim Betriebsbereich handelt es sich um einen Richtwert einschließlich Hysterese, für den keine Gewährleistung übernommen wird. Je nach Einsatzumgebung können Abweichungen auftreten.
- Vor der endgültigen Einstellung des Signalgebers zunächst die Betriebsbedingungen prüfen.

Signalgebermontage

Drehen Sie die Schrauben für den Signalgeber-Montagewinkel drei bis vier Mal, um sie zu lösen (es ist nicht erforderlich, sie zu entfernen), und schieben und entfernen Sie den Winkel. Setzen Sie dann einen Schalter in die Nut am Montagewinkel ein.

Da die Befestigungsschrauben des Produkts den Signalgeber-Montagewinkel beeinträchtigen, zuerst das Gehäuse und dann den Montagewinkel montieren. Nach der Anpassung der Einbauposition muss die Signalgeberbefestigungsschraube mit dem beiliegenden Feinschraubendreher festgezogen werden.

- * Der verwendbare Signalgeber ist D-M9 (N/P/B) (W) (M/L/Z).
- * Die Richtung des Anschlusskabels ist spezifiziert. Bei Montage in der falschen Richtung funktioniert der Signalgeber womöglich nicht korrekt.
- Verwenden Sie zum Festziehen der Signalgeber-Befestigungsschraube (im Lieferumfang des Signalgebers enthalten) einen Feinschraubendreher mit einem Griffdurchmesser von ca. 5 bis
- Wenn mehr als zwei Signalgeber-Montagewinkel erforderlich sind, diese bitte separat bestellen. Alle acht Schrauben für die Befestigung des Signalgeber-Montagewinkels am Hubende werden für die Lieferung am Gehäuse festgezogen.
 Für die Ausführung mit einem Hub von 50 mm werden nur vier Schrauben motorseitig befestigt.

Elektronischer Signalgeber Direktmontageausführung D-M9N/D-M9P/D-M9B

Eingegossenes Kabel

- 2-Draht-Ausführung mit reduziertem max. Strom (2,5 bis 40 mA).
- Standardmäßig werden flexible Kabel verwendet.

△ Achtung

Sicherheitshinweise

Befestigen Sie den Signalgeber mit der am Gehäuse angebrachten Schraube. Wird eine andere als die mitgelieferte Schraube benutzt, kann der Signalgeber beschädigt werden.

Technische Daten Signalgeber

Weitere Details zu Produkten, die internationalen Standards entsprechen, finden Sie auf der Website von SMC.

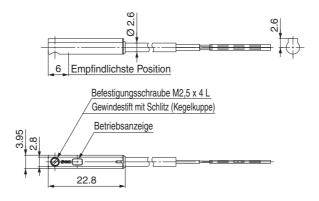
SPS: Speicherprogrammierbare Steuerung

D-M9 □, D-M9 □	D-M9□, D-M9□V (mit Betriebsanzeige)					
Signalgebermodell	D-M9N	D-M9P	D-M9B			
Abgang elektrischer Anschluss		axial				
Art der Verdrahtung	3-Draht-	System	2-Draht			
Ausgangstyp	NPN	PNP	_			
Anwendung	IC-Steuerung	IC-Steuerung, Relais, SPS				
Versorgungsspannung	5, 12, 24 VDC	5, 12, 24 VDC (4,5 bis 28 V)				
Stromaufnahme	10 mA ode	er weniger	_			
Betriebsspannung	28 VDC oder weniger	28 VDC oder weniger — 2				
Arbeitsstrom	max. 4	10 mA	2,5 bis 40 mA			
Interner Spannungsabfall	0,8 V oder weniger bei 10	4 V oder weniger				
Kriechstrom	100 μA oder weniger bei 24 VDC 0,8 mA oder weniger					
Betriebsanzeige	EIN: rote LED leuchtet.					
Standard	(CE-Kennzeichnung, RoH	6			

Technische Daten des flexiblen ölbeständigen Anschlusskabels

Signalge	bermodell	D-M9N D-M9P D-M9B		D-M9B
Mantel	Außen-Ø [mm]	2,6		
Isolator	Anzahl Trägerkörper	3-Draht (braun/blau/schwarz) 2-Draht (braun/bl		
Isolatoi	Außen-Ø [mm]	0,88		
Leiter	Effektiver Querschnitt [mm²]	0,15		
Leitei	Litzen-Durchmesser [mm]	0,05		
Kleinster Biegeradi	ius [mm] (Richtwerte)		17	

- Weitere Einzelheiten zu den gemeinsamen Spezifikationen des elektronischen Signalgebers finden Sie im WEB-Katalog.
- Weitere Einzelheiten zur Anschlusskabellänge finden Sie im WEB-Katalog.


Gewicht

[g]

Signalgebermodell		D-M9N D-M9P		D-M9B
	0,5 m ()	8		7
Anschluss-	1 m (M)	14		13
kabellänge	3 m (L)	41		38
	5 m (Z)	68		63

Abmessungen [mm]

D-M9□

Elektronischer Signalgeber (Öffner) Direktmontageausführung

Eingegossenes Kabel

- Das Ausgangssignal ist eingeschaltet, wenn der Signalgeber nicht betätigt ist.
- Einsetzbar in allen Serie, in denen auch der D-M9 verwendbar ist.

∴Achtung

Sicherheitshinweise

Befestigen Sie den Signalgeber mit der am Gehäuse angebrachten Schraube. Wird eine andere als die mitgelieferte Schraube benutzt, kann der Signalgeber beschädigt

Technische Daten Signalgeber finden Sie auf der Website von SMC.

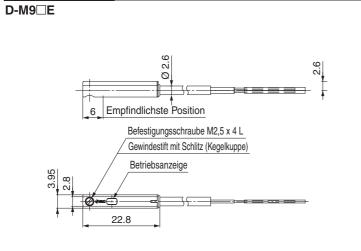
internationalen Standards entsprechen,

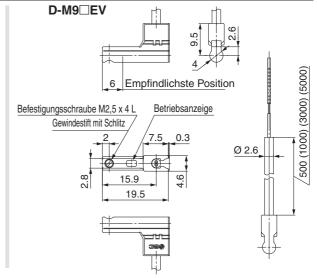
Speicherprogr	

D-M9□E, D-M9□EV (mit Betriebsanzeige)						
Signalgebermodell	D-M9NE	D-M9NEV	D-M9PE	D-M9PEV	D-M9BE	D-M9BEV
Abgang elektrischer Anschluss	axial	Senkrecht	axial	Senkrecht	axial	Senkrecht
Art der Verdrahtung		3-Draht-	-System		2-D	raht
Ausgangstyp	N	PN	PI	NΡ	-	_
Anwendung		C-Steuerung	, Relais, SPS	3	24 VDC, F	Relais, SPS
Versorgungsspannung	5	5, 12, 24 VDC (4,5 bis 28 V) —				
Stromaufnahme		10 mA ode	er weniger		-	_
Betriebsspannung	28 VDC oc	ler weniger	-	_	24 VDC (10 bis 28 VDC	
Arbeitsstrom		max. 4	40 mA		2,5 bis	40 mA
Interner Spannungsabfall	0,8 V oder	0,8 V oder weniger bei 10 mA (max. 2 V bei 40 mA) 4 V oder wenig			weniger	
Kriechstrom	100 μA oder weniger bei 24 VDC 0,8 mA oder weniger				er weniger	
Betriebsanzeige	EIN: rote LED leuchtet.					
Standard		(CE-Kennzeic	hnung, RoHS	3	

Technische Daten des flexiblen ölbeständigen Anschlusskabels

Signalge	bermodell	D-M9NE(V) D-M9PE(V) D-M9BE(V)		D-M9NE(V) D-M9PE(V)		D-M9BE(V)
Mantel	Außen-Ø [mm]	2,6				
Isolator	Anzahl Trägerkörper	3-Draht (braun/blau/schwarz) 2-Draht (braun				
isolatoi	Außen-Ø [mm]	0,88				
Leiter	Effektiver Querschnitt [mm²]	0,15				
Leilei	Litzen-Durchmesser [mm]	0,05				
Kleinster Biegerad	us [mm] (Richtwerte)		17			


- Weitere Einzelheiten zu den gemeinsamen Spezifikationen des elektronischen Signalgebers finden Sie im WEB-Katalog.
- Weitere Einzelheiten zur Anschlusskabellänge finden Sie im WEB-Katalog.


Gewicht [g]

Signalgebermodell		D-M9NE(V)	D-M9PE(V)	D-M9BE(V)
	0,5 m ()	8		7
Anschluss-	1 m (M)*1	14 41		13
kabellänge	3 m (L)			38
	5 m (Z)*1	6	8	63

^{*1} Die Optionen 1 m und 5 m werden bei Eingang der Bestellung produziert.

Abmessungen [mm]

Elektronischer Signalgeber mit 2-farbiger Anzeige Direktmontageausführung

D-M9NW/D-M9PW/D-M9BW

Eingegossenes Kabel

- 2-Draht-Ausführung mit reduziertem max. Strom (2,5 bis 40 mA).
- Standardmäßig werden flexible Kabel verwendet.
- Die optimale Schaltposition kann anhand der Farbe der leuchtenden LED bestimmt werden.
 (Rot → Grün ← Rot)

△ Achtung

Sicherheitshinweise

Befestigen Sie den Signalgeber mit der am Gehäuse angebrachten Schraube. Wird eine andere als die mitgelieferte Schraube benutzt, kann der Signalgeber beschädigt werden.

Technische Daten Signalgeber

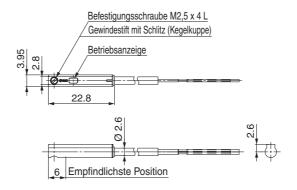
Weitere Details zu Produkten, die internationalen Standards entsprechen, finden Sie auf der Website von SMC.

SPS: Speicherprogrammierbare Steuerung

D-M9□W, D-M	D-M9□W, D-M9□WV (mit Betriebsanzeige)					
Signalgebermodell	D-M9NW	D-M9PW	D-M9BW			
Abgang elektrischer Anschluss		axial				
Art der Verdrahtung	3-Draht	-System	2-Draht			
Ausgangstyp	NPN	PNP	_			
Anwendung	IC-Steuerung	, Relais, SPS	24 VDC, Relais, SPS			
Versorgungsspannung	5, 12, 24 VDC	5, 12, 24 VDC (4,5 bis 28 V)				
Stromaufnahme	10 mA ode	er weniger	_			
Betriebsspannung	28 VDC oder weniger		24 VDC (10 bis 28 VDC)			
Arbeitsstrom	max.	40 mA	2,5 bis 40 mA			
Interner Spannungsabfall	0,8 V oder weniger bei 10	0 mA (max. 2 V bei 40 mA)	4 V oder weniger			
Kriechstrom	100 μA oder weniger bei 24 VDC 0,8 mA oder weniger					
Betriebsanzeige	Betriebsbereich Rote LED leuchtet. Geeigneter Betriebsbereich Grüne LED leuchtet.					
Standard	(CE-Kennzeichnung, RoH	3			

Technische Daten des flexiblen ölbeständigen Anschlusskabels

Signalge	Signalgebermodell		D-M9NW D-M9PW D-M9BW			
Mantel	Außen-Ø [mm]	2,6		2,6		
Isolator	Anzahl Trägerkörper	3-Draht (braun/blau/schwarz) 2-Draht (braun/b				
isolatoi	Außen-Ø [mm]	0,88				
Leiter	Effektiver Querschnitt [mm²]	0,15				
Leiter	Litzen-Durchmesser [mm]	0,05				
Kleinster Biegeradi	ius [mm] (Richtwerte)		17			


- * Weitere Einzelheiten zu den gemeinsamen Spezifikationen des elektronischen Signalgebers finden Sie im **WEB-Katalog**.
- * Weitere Einzelheiten zur Anschlusskabellänge finden Sie im WEB-Katalog.

Gewicht [9]

Signalgebermodell D-M9NW		D-M9PW	D-M9BW	
	0,5 m ()	8		7
Anschluss-	1 m (M)	14 41		13
kabellänge	3 m (L)			38
5 m (Z)		6	88	63

Abmessungen [mm]

D-M9□W

Controller Serie JXC□

Schrittdaten-Eingabe

S 43

Hohe Leistung

Schrittmotor 24 VDC, batterieloser Absolut-Encoder

Serie JXC5H/6H

EtherCAT/EtherNet/IP™/PROFINET

S 50

Hohe Leistung

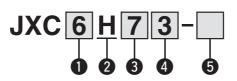
Schrittmotor 24 VDC, batterieloser Absolut-Encoder

Serie JXCEH/9H/PH

Ether CAT.

EtherNet/IP

• Antriebskabel S. 55


Schrittmotor-Controller Hochleistungsausführung (Ausführung Schrittdaten-Eingabe)

Serie JXC5H/6H

(RoHS)

Bestellschlüssel

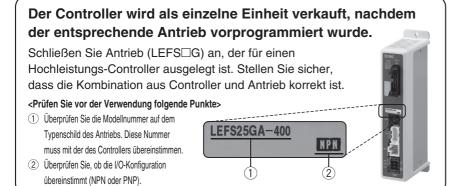
5	Parallele I/O (NPN) Ausführung
6	Parallele I/O (PNP) Ausführung

2 Spezifik	cation
------------	--------

H Hochleistungsausführung

7	Schraubmontage
8	DIN-Schiene

4 länge I/O-Kabel


_	Ohne					
1	1,5 m					
3	3 m					
5	5 m					

5 bestellnummer Antrieb

Ohne Kabelspezifikationen und Antriebsoptionen Beispiel: Geben Sie "LEFS25GA-100" für den LEFS25GA-100B-R1□ ein.

BC Unbeschriebener Controller*1

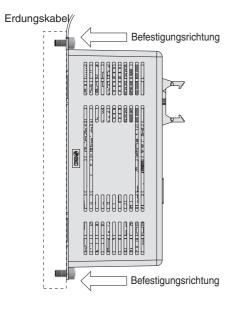
^{*1} Erfordert spezielle Software (JXC-BCW)

 Siehe Betriebsanleitung für die Verwendung der Produkte. Diese können Sie von unserer Webseite: http://www.smc.eu herunterladen.

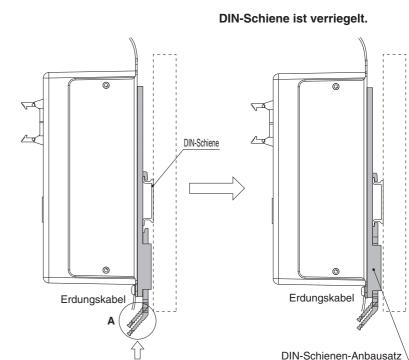
⚠ Achtung

[CE/UKCA-konforme Produkte]

Die Erfüllung der EMV-Richtlinie wurde geprüft, indem der elektrische Antrieb der Serie LE mit dem Modell der Serie JXC5H/6H kombiniert wurde.


Die EMV ist von der Konfiguration der Schalttafel des Kunden und von der Beeinflussung sonstiger elektrischer Geräte und Verdrahtung abhängig. Aus diesem Grund kann die Erfüllung der EMV-Richtlinie nicht für SMC-Bauteile zertifiziert werden, die unter realen Betriebsbedingungen in Kundensystemen integriert sind. Daher muss der Kunde die Erfüllung der EMV-Richtlinie für das Gesamtsystem bestehend aus allen Maschinen und Anlagen überprüfen.

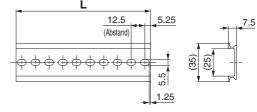
Technische Daten


Modell	JXC5H JXC6H
kompatibler Motor	Schrittmotor (Servo/24 VDC)
Spannungsversorgung	24 VDC ±10 %
Stromaufnahme (Controller)	max. 100 mA
kompatibler Encoder	Batterieloser Absolut-Encoder
Paralleleingang	11 Eingänge (Optokoppler)
Parallelausgang	13 Ausgänge (Optokoppler)
Serielle Kommunikation	RS485 (nur für LEC-T1 und JXC-W2)
Datenspeicherung	EEPROM
Statusanzeige	PWR, ALM
Länge Antriebskabel [m]	Antriebskabel: max. 20
Kühlsystem	natürliche Luftkühlung
Betriebstemperaturbereich [°C]	0 bis 40
Luftfeuchtigkeitsbereich [%RH]	max. 90 (keine Kondensation)
Isolationswiderstand [MΩ]	Zwischen allen externen Klemmen und Gehäuse: 50 (500 VDC)
Gewicht [g]	150 (Schraubmontage), 170 (DIN-Schienenmontage)

Montageanweisung

a) Schraubmontage (JXC□H7□) (Montage mit zwei M4-Schrauben)

b) DIN-Schienenmontage (JXC□H8□) (Montage auf DIN-Schiene)



Der Controller wird in die DIn_Schiene eingehängt und zur Verriegelung wird **A** in Pfeilrichtung geschoben.

* Wird die Serie LE in der Baugröße 25 oder größer verwendet wird, muss der Abstand zwischen den Controllern mindestens 10 mm betragen.

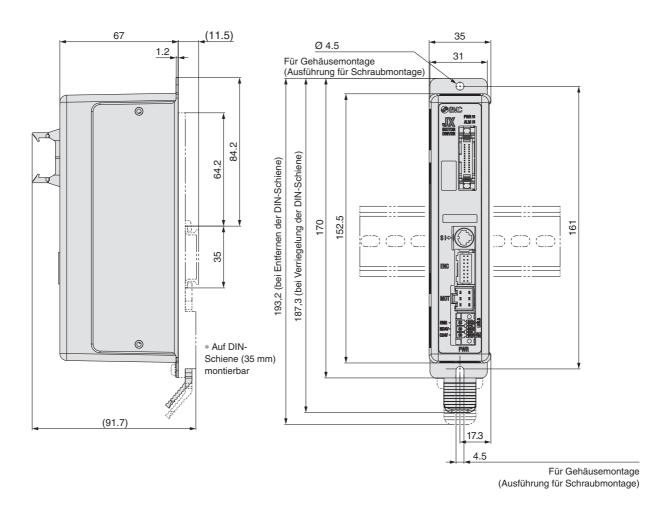
DIN-Schiene AXT100-DR-□

* Für □, geben Sie eine Nummer aus Zeilen-Nr. der nachfolgenden Tabelle ein. Siehe Maßzeichnungen auf Seite 45 für Befestigungsdimensionen.

L-Maß [mm]

Nr.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
L	23	35,5	48	60,5	73	85,5	98	110,5	123	135,5	148	160,5	173	185,5	198	210,5	223	235,5	248	260,5
Nr.	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
			20		25	20	21	20	29	30	31	32	33	34	33	30	31	30	39	40

DIN-Schienen-Anbausatz

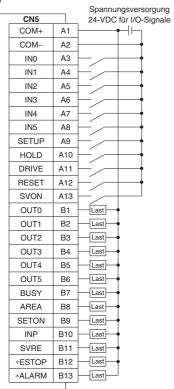

LEC-3-D0 (mit 2 Befestigungsschrauben)

Der DIN-Schienen-Anbausatz kann nachträglich bestellt und an den Controller mit Schraubmontage montiert werden.

Serie JXC5H/6H

Abmessungen

Schrittmotor-Controller Hochleistungsausführungr (Ausführung Schrittdaten-Eingabe)


Verdrahtungsbeispiel 1

Paralleler I/O-Anschluss

* Verwenden Sie für den Anschluss einer SPS an den parallelen I/O-Eingang das I/O-Kabel (LEC-CN5-□).

* Die Verdrahtung ist je nach paralleler I/O-Ausführung unterschiedlich (NPN oder PNP).

Elektrisches Schaltschema JXC5H□□ (NPN)

Eingangssignal

Bezeichnung	Details
COM+	Anschluss der 24 V-Spannungsversorgung für das Eingangs-/Ausgangssignal
COM-	Anschluss Masse für das Eingangs-/Ausgangssignal
IN0 bis IN5	Schrittdaten entsprechend Bit-Nummer. (Der Eingangsbefehl erfolgt in der Kombination von IN0 bis 5)
SETUP	Befehl für Rückkehr zur Ausgangsposition
HOLD	Der Betrieb wird vorübergehend angehalten
DRIVE	Befehl zum Verfahren
RESET	Zurücksetzen des Alarms und Unterbrechung des Betriebs
SVON	Befehl Servo ON

JXC6H□□ (PNP)

			Spannungsversorgung
	CN5		24-VDC für I/O-Signale
	COM+	A1	
	COM-	A2	
	IN0	А3	
	IN1	A4	
	IN2	A5	
	IN3	A6	
	IN4	A7	
	IN5	A8	
	SETUP	A9	
	HOLD	A10	
	DRIVE	A11	
	RESET	A12	
	SVON	A13	
	OUT0	B1	Last
	OUT1	B2	Last
	OUT2	В3	Last
	OUT3	B4	Last
	OUT4	B5	Last
	OUT5	B6	Last
	BUSY	B7	Last
	AREA	B8	Last
	SETON	B9	Last
	INP	B10	Last
	SVRE	B11	Last
	*ESTOP	B12	Last
	*ALARM	B13	Last
_			

Ausgangssignal

nai
Details
Ausgabe der Schrittdaten-Nummer während des Betriebs
Ausgabe, wenn der Antrieb in Bewegung ist
Ausgabe innnerhalb des Ausgabeeinstellbereichs der Schrittdaten
Ausgabe bei Rückkehr zur Referenzposition
Ausgabe bei Erreichen der Zielposition oder Zielkraft (Schaltet sich ein, wenn Positionierung oder Vorschub abgeschlossen sind.)
Ausgabe, wenn Motor eingeschaltet ist
keine Ausgabe bei EMG-Stopp-Befehl
keine Ausgabe bei Alarm

^{*1} Signal des negativ-logischen Schaltkreises (N.C.)

Schrittdaten-Einstellung

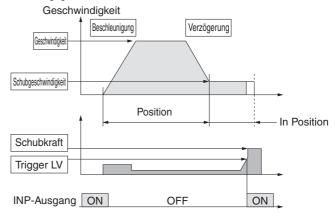
1. Schrittdaten-Einstellung für Positionierung

Mit dieser Einstellung bewegt sich der Antrieb in Richtung der Zielposition und stoppt dort.

Das nachfolgende Diagramm zeigt die Einstellparameter und den Betrieb.

Die Einstellparameter und Einstellwerte für diesen Betrieb sind unten angegeben.

○: Muss eingestellt werden.


Schrittdaten (Positionierung)

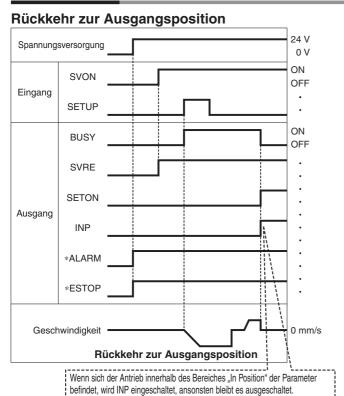
SCIII	illuateri (Positioi	nierung)—: Einstellung ist nicht erforderlich
Notwen- digkeit	Element	Details
0	Bewegungsart MOD	Ist eine absolute Position erforderlich, stellen Sie "Absolue" ein. Ist eine relative Position erforderlich, stellen sie "Relative" ein. Wenn die relative Positionierung erforderlich ist, auf Relativ setzen.
0	Geschwindigkeit	Verfahrgeschwindigkeit zur Zielposition
0	Position	Zielposition
0	Beschleunigung	Beschleunigungsparameter, je höher der Einstellwert, desto schneller erreicht der Antrieb die eingestellte Geschwindigkeit. Je höher der Einstellwert, desto schneller erreicht er die eingestellte Geschwindigkeit.
0	Verzögerung	Verzögerungsparameter, je höher der Einstellwert, desto schneller stoppt der Antrieb. Je höher der Einstellwert, desto schneller stoppt er.
0	Schubkraft	Einstellwert 0 (Werden Werte von 1 bis 100 eingestellt, wechselt der Antrieb zu Schub-Betrieb.)
_	Trigger LV	Einstellung nicht erforderlich.
_	Schubgeschwindigkeit	Einstellung nicht erforderlich.
0	Stellkraft	max. Drehmoment während des Positionierbetriebs (keine besondere Änderung erforderlich.)
0	Area 1, Area 2	Bedingung, die das AREA-Ausgangssignal (Bereich) einschaltet.
0	In Position	Bedingung, die das INP-Ausgangssignal einschaltet. Sobald der Antrieb den [In Position]-bereich erreicht, schaltet sich das INP-Ausgangssignal ein. (Das Ändern des Nafangswertes ist hier nicht notwendig.) Wenn die Ausgabe des Ankunftssignals vor Abschluss des Betriebes erforderlich ist, erhöhen Sie den Wert.

2. Schrittdaten-Einstellung für Schub

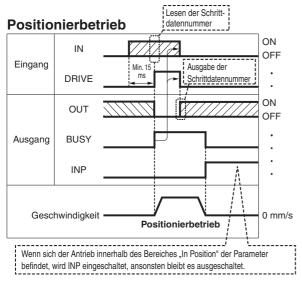
Der Antrieb bewegt sich in Richtung der Schub-Startposition. Wenn er diese Position erreicht hat, startet er den Schubbetrieb mit der Kraft, die unterhalb des Kraft-Einstellwertes liegt. oder weniger zu schieben.

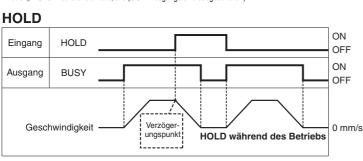
Das nachfolgende Diagramm zeigt die Einstellparameter und den Betrieb. Die Einstellparameter und Einstellwerte für diesen Betrieb sind unten angegeben.

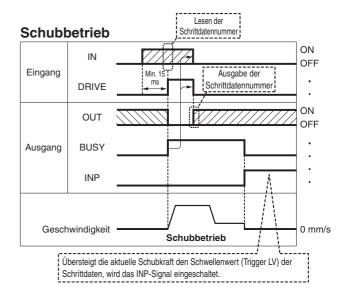
○: Muss eingestellt werden.

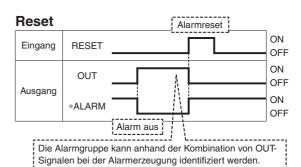

Schrittdaten (Schubbetrieb)

○: müssen den Anforderung


Schr	ittdaten (Schubb	etrieb) entsprechend eingestellt werden
Notwen- digkeit	Element	Details
0	Bewegungsart MOD	Ist eine absolute Position erforderlich, stellen Sie "Absolue" ein. Ist eine relative Position erforderlich, stellen sie "Relative" ein.
0	Geschwindigkeit	Verfahrgeschwindigkeit zur Schub-Startposition
0	Position	Schub-Startposition
0	Beschleunigung	Beschleunigungsparameter, je höher der Einstellwert, desto schneller erreicht der Antrieb die eingestellte Geschwindigkeit.
0	Verzögerung	Verzögerungsparameter, je höher der Einstellwert, desto schneller stoppt der Antrieb.
0	Schubkraft	Das Schubverhältnis wird definiert. Der Einstellbereich variiert je nach gewähltem elektrischen Antrieb. Siehe Betriebsanleitung des elektrischen Antriebs.
0	Trigger LV	Bedingung, die das INP-Ausgangssignal einschaltet. Das INP-Ausgangssignal schaltet sich ein, wenn die erzeugte Kraft den Wert überschreitet. Der Schwellenwert darf max. dem Wert der Schubkraft entsprechen.
0	Schubgeschwindigkeit	Schubgeschwindigkeit Wird die Geschwindigkeit auf einen hoghen Wert eingestellt, kann es, aufgrund von Stoßkräften verursacht durch den Aufprall auf das Ende, zu einer Beschädigung des elektrischen Antriebes und des Werkstückes kommen. Stellen Sie diese Werte dementsprechend niedriger ein. Siehe Betriebsanleitung des elektrischen Antriebs.
0	Stellkraft	Max. Drehmoment während des Positionierbetriebs (keine besondere Änderung erforderlich.)
0	Area 1, Area 2	Bedingung, die das AREA-Ausgangssignal (Bereich) einschaltet.
0	In Position	Verfahrweg während des Schubs. Übersteigt der Verfahrweg diese Einstellung, kommt es auch ohne Schub zum Stopp. Wird der Verfahrweg überschritten, schaltet sich das INP-Ausgangssignal nicht ein.


Signal-Tabelle

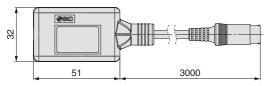

* "*ALARM" und "*ESTOP" werden als negativ-logischer Schaltkreis dargestellt.



COUT" wird ausgegeben, wenn sich "DRIVE" von ON auf OFF ändert. Für nähere Angaben zum Controller für die Serie LEM siehe Betriebsanleitung. (Wenn die Spannungsversorgung angelegt wird, schalten sich "DRIVE" oder "RESET" oder "*ESTOP" schatet sich aus, alle "OUT"-Ausgänge sind ausgeschaltet.)

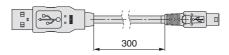
Wenn sich der Antrieb im Positionsbereich befindet, stoppt er auch dann nicht, wenn ein HOLD-Signal eingegeben wird.

* "*ALARM" wird als negativ-logischer Schaltkreis dargestellt.



Serie JXC5H/6H

Optionen


Kommunikationskabel f ür Controllerparametrierung

1) Kommunikationskabel JXC-W2A-C

* Kann direkt an den Controller angeschlossen werden.

② USB-Kabel LEC-W2-U

3Controller-Einstellset JXC-W2A

Ein Set, bestehend aus einem Kommunikationskabel (JXC-W2A-C) und einem USB-Kabel (LEC-W2-U)

<Controller-Software/USB-Treiber>

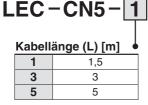
- Controller-Software
- USB-Treiber (Für JXC-W2A-C)

Von der SMC-Webseite herunterladen:

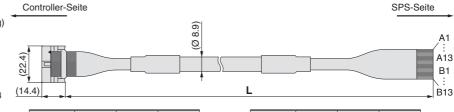
https://www.smc.de

Systemvoraussetzungen Hardware

OS	Windows®7, Windows®8.1, Windows®10
Kommunikations- schnittstelle	USB 1.1 oder USB 2.0-Anschlüsse
Anzeige	1024 x 768 oder höher


* Windows®7, Windows®8.1, und Windows®10 sind registrierte Handelsmarken der Microsoft Corporation in den USA.

■ Adapterkabel P5062-5 (Kabellänge: 300 mm)



* Für den Anschluss der Teaching-Box (LEC-T 1 - 3 \square G \square) oder des Controller-Einstellsets (LEC-W 2 □) an den Controller wird ein Adapterkabel benötigt.

I/O-Kabel

* Leiterquerschnitt: AWG28

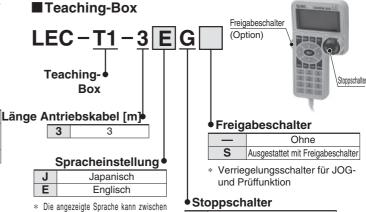
Gewicht

acwionit							
Produkt-Nr.	Gewicht [g]						
LEC-CN5-1	170						
LEC-CN5-3	320						
LEC-CN5-5	520						

Anschlussstecker- Nr.	Isolierungsfarbe	Punktmarkierung	Punktfarbe
A1	hellbraun		Schwarz
A2	hellbraun		rot
А3	gelb		Schwarz
A4	gelb		rot
A5	hellgrün		Schwarz
A6	hellgrün		rot
A7	Grau		Schwarz
A8	Grau		rot
A9	weiß		Schwarz
A10	Weiß		rot
A11	hellbraun		Schwarz
A12	hellbraun		rot
A13	Gelb		Schwarz

■ Spannungsversorgungsstecker JXC-CPW

Der Spannungsversorgungsstecker ist Zubehör <Verwendbare Kabelgröße> AWG20 (0,5 mm²), Umhüllungsdurchmesser 2,0 mm oder weniger


④ 0V 1 C24V

(2) M24V 3 EMG

(5) N.C. (6) LK RLS

Spannungsversorgungsstecker

oparinarigo rondorgani godiodito.										
Klemmenbezeichnung	Funktion	Details								
0V	Gemeinsame Versorgung (–)	Die M24V-Klemme, C24V-Klemme, EMG-Klemme und LK RLS-Klemme liegen an gemeinsamer Leitung (-).								
M24V	Motor-Spannungsversorgung (+)	Motor-Spannungsversorgung (+) am Controller								
C24V	Steuerungs-Spannungsversorgung (+)	Steuerungs-Spannungsversorgung (+) am Controller								
EMG	Stopp Signal (+)	Positive Spannung für Stopp Signal Freigabe								
LK RLS	Entriegelung (+)	Positive Spannung für Entriegelung								

Stoppschalter Englisch oder Japanisch gewechselt werden

G Ausgestattet mit Stoppschalter

B1

Technische Daten

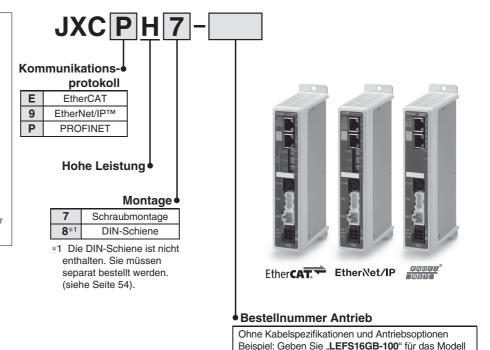
Beschreibung
Stoppschalter, Schalter zum Aktivieren (Option)
3
IP64 (außer Stecker)
5 bis 50
max. 90 (keine Kondensation)
350 (außer Kabel)

Anschlussstecker- Nr.	Isolierungsfarbe	Punktmarkierung	Punktfarbe			
B1	gelb		rot			
B2	hellgrün		Schwarz			
В3	hellgrün		rot			
B4	Grau		Schwarz			
B5	Grau		rot			
B6	weiß		Schwarz			
B7	Weiß		rot			
B8	hellbraun		Schwarz			
B9	hellbraun		rot			
B10	gelb		Schwarz			
B11	gelb		rot			
B12	hellgrün		Schwarz			
B13	Hellgrün		Rot			
_	Abschirmung					

Hohe Leistung Schrittmotor-Controller

Serie JXCEH/9H/PH

Bestellschlüssel


Achtung

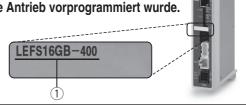
[CE/UKCA-konforme Produkte]

① die Erfüllung der EMV-Richtlinie wurde geprüft, indem der elektrische Antrieb der Serie LE mit dem Modell der Serie JXCEH/PH kombiniert wurde.

Die EMV ist von der Konfiguration der Schalttafel des Kunden und von der Beeinflussung sonstiger elektrischer Geräte und Verdrahtung abhängig. Aus diesem Grund kann die Erfüllung der EMV-Richtline nicht für SMC-Bauteile zertifiziert werden, die unter realen Betriebsbedingungen in Kundensystemen integriert sind. Daher muss der Kunde die Erfüllung der EMV-Richtlinie für das Gesamtsystem bestehend aus allen Maschinen und Anlagen überprüfen.

② Für die Serie JXCEH/PH (Schrittmotor-Controller) wurde die EMV-Konformität durch den Einbau eines Störschutzfiltersatzes (LEC-NFA) geprüft. Informationen über den Störschutzfiltersatz finden Sie auf Seite 54. Informationen zur Installation finden Sie in der Betriebsanleitung des JXCEH/PH.

LEFS16GB-100B-S1□□ ein.


BC Unbeschriebener Controller*

*1 Erfordert spezielle Software (JXC-BCW)

Der Controller wird als einzelne Einheit verkauft, nachdem der entsprechende Antrieb vorprogrammiert wurde.

Stellen Sie sicher, dass die Kombination aus Controller und Antrieb korrekt ist.

 Überprüfen Sie die Modellnummer auf dem Typenschild des Antriebs. Diese Nummer muss mit der des Controllers übereinstimmen.

ESiehe Betriebsanleitung für die Verwendung der Produkte. Diese können Sie von unserer Webseite: http://www.smc.eu herunterladen.

Hinweise für unbeschriebene Controller (JXC□H□-BC)

Einen unbeschriebenen Controller kann der Kunde mit Daten des Antriebs beschreiben, mit dem er kombiniert und verwendet werden soll. Verwenden Sie die spezielle Parametriersoftware für unbeschriebene Controller (JXC-BCW).

- Die spezielle Software (JXC-BCW) steht auf unserer Website zum Download bereit.
- Zur Verwendung dieser Software muß ein spezielles Kommunikationskabel (JXC-W2A-C) und das USB-Kabel (LEC-W2-U) separat bestellt werden.

SMC-Website: https://www.smc.de

Serie JXCEH/9H/PH

Technische Daten

	Mod	ell	JXCEH	JXC9H	JXCPH					
Fe	Idbusprot	okoll	EtherCAT EtherNet/IP™ PROFINET							
ko	mpatibler	Motor	Schrittmotor (Servo/24 VDC)							
Sp	pannungsversorgung Versorgungsspannung: 24 VDC ±10 %									
Str	omaufnahm	e (Controller)	max. 200 mA	max. 200 mA	max. 200 mA					
ko	mpatibler	Encoder		Batterieloser Absolut-Encoder						
.e	Verwend-	Protokoll	EtherCAT*2	EtherNet/IP™*2	PROFINET*2					
İ	bares	Version*1	Konformitätsprüfung	Teil 1 (Ausgabe 3.14)	Spezifikation					
틸	System	version	Bericht V.1.2.6	Teil 2 (Ausgabe 1.15)	Version 2.32					
Technische Daten Kommunikation	Übertragı geschwir		100 Mbps*2	10/100 Mbps*2 (automatische Verbindungsherstellung)	100 Mbps*2					
e D	Konfigura	tionsdatei*3	ESI-Datei	EDS-Datei	GSDML-Datei					
sch	I/O		Eingabe 20 Bytes	Eingabe 36 Bytes Eingabe 3						
톭	Installatio	onsbereich	Ausgabe 36 Bytes	Ausgabe 36 Bytes Ausgabe 36 Byte						
ř	Abschluss	widerstand	nicht inbegriffen							
Da	tenspeich	erung		EEPROM						
St	atusanzeiç	ge	PWR, RUN, ALM, ERR	PWR, ALM, MS, NS	PWR, ALM, SF, BF					
Lä	nge Antriel	bskabel [m]		Antriebskabel: max. 20						
Κü	ihlsystem			natürliche Luftkühlung						
Bet	riebstempera	turbereich [°C]		0 bis 40 (kein Gefrieren)*4						
Luf	tfeuchtigkeits	bereich [%RH]		max. 90 (keine Kondensation)						
Isc	lationswide	erstand [M Ω]	Zwischen	allen externen Klemmen und Gehäuse: 50	(500 VDC)					
Ge	wicht [g]		260 (Schraubmontage) 280 (DIN-Schienenmontage)	250 (Schraubmontage) 270 (DIN-Schienenmontage)	260 (Schraubmontage) 280 (DIN-Schienenmontage)					

- *1 Bitte beachten Sie, dass Angaben zu Versionen Änderungen unterliegen können.
- *2 Verwenden Sie für PROFINET, EtherNet/IPTM und EtherCATein abgeschirmtes Kommunikationskabel mit CAT5 oder höher.
- *3 Die Dateien können von der SMC-Webseite heruntergeladen werden
- *4 Der Betriebstemperaturbereich sowohl für Produkte der Controllerversionen 1 .xx und 2 .xx beträgt 0 bis 4 0 °C. Einzelheiten zur Kennzeichnung der unterscheidlichen Controllerversionen entnehmen Sie dem Web-Katalog.

■Markenzeichen

EtherNet/IP® ist ein eingetragenes Warenzeichen von ODVA, Inc.

EtherCAT® ist eine registrierte Handelsmarke und patentierte Technologie, unter Lizenz der Beckhoff Automation GmbH, Deutschland.

Beispiel Betriebsbefehl

Zusätzlich zur Schrittdaten-Eingabe von maximal 64 Punkten in jedem Kommunikationsprotokoll kann jeder Parameter in Echtzeit über die numerische Dateneingabe geändert werden.

* Alle numerischen Werte außer "Bewegungskraft", "Bereich 1" und "Bereich 2" können verwendet werden, um das Gerät mittels numerischer Befehle von JXCL1 zu betreiben.

<Anwendungsbeispiel> Bewegung zwischen 2 Punkten

Nr.	Bewegungsmodus	Geschwindigkeit	Position	Beschleunigung	Verzögerung	Schubkraft	Trigger LV	Schubgeschwindigkeit	Stellkraft	Area 1	Area 2	In Position
0	1: Absolut	100	10	3000	3000	0	0	0	100	0	0	0,50
1	1: Absolut	100	100	3000	3000	0	0	0	100	0	0	0,50

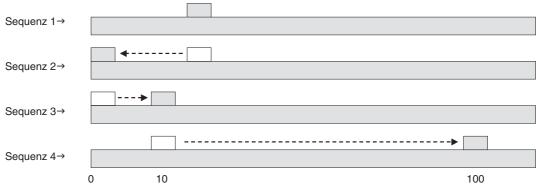
<Eingabe der Schrittnummer >

Sequenz 1: Befehl für Servo ON

Sequenz 2: Befehl für Rückkehr zur Ausgangsposition

Sequenz 3: Schrittdaten-Nr. 0 für das DRIVE-Signal eingeben.

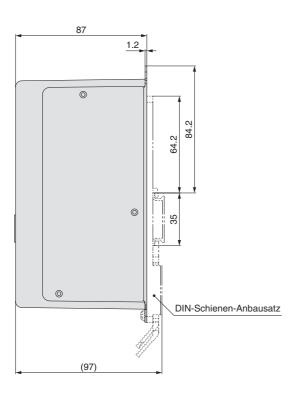
Sequenz 4: Daten für Schritt-Nr. 1 für das DRIVE-Signal eingeben, nachdem das DRIVE-Signal vorübergehend ausgeschaltet wurde.

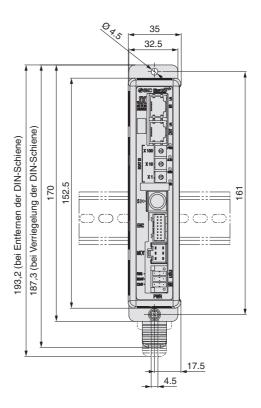

<Numerische Dateneingabe>

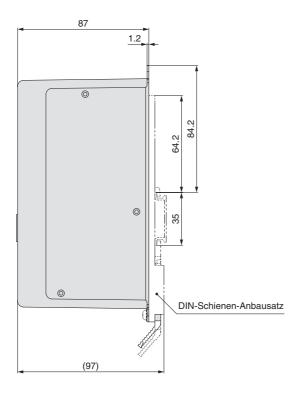
Sequenz 1: Befehl für Servo ON

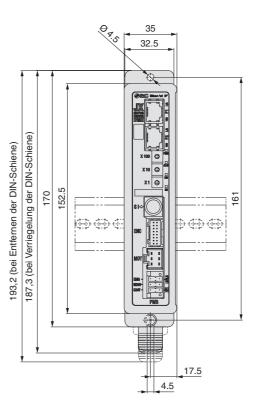
Sequenz 2: Befehl für Rückkehr zur Ausgangsposition

Sequenz 3: Schrittdaten-Nr. 0 eingeben und Befehlseingabe-Flag (Position) einschalten. Als Zielposition 10 eingeben. Anschließend schalten Sie das Start-Flag ein. Sequenz 4: Schrittdaten-Nr. 0 und Befehlseingabe-Flag (Position) einschalten, um die Zielposition auf 100 zu ändern, während das Start-Flag eingeschaltet ist.

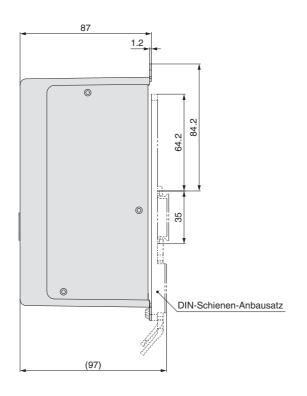

Die gleiche Operation kann mit jedem Betriebsbefehl durchgeführt werden.

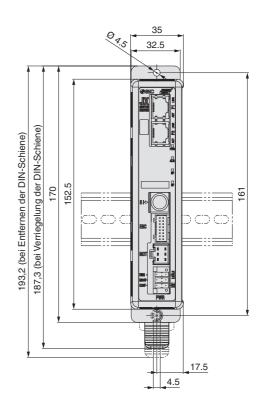



Abmessungen


JXCEH

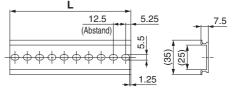
JXC9H





Serie JXCEH/9H/PH

Abmessungen


JXCPH

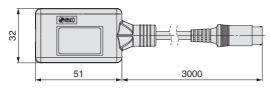
DIN-Schiene AXT100-DR-□

* Für □ eine Nummer aus der Zeile "Nr" der nachstehenden Tabelle eingeben. Siehe Abmessungen auf Seiten 52 und 53 für Befestigungsdimensionen.

L-Maß [mm]

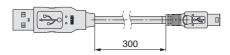
Nr.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
L	23	35,5	48	60,5	73	85,5	98	110,5	123	135,5	148	160,5	173	185,5	198	210,5	223	235,5	248	260,5
Nr.	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
L	273	285,5	298	310,5	323	335,5	348	360,5	373	385,5	398	410,5	423	435,5	448	460,5	473	485,5	498	510,5

DIN-Schienen-Anbausatz


LEC-3-D0 (mit 2 Befestigungsschrauben)

Der DIN-Schienen-Anbausatz kann nachträglich bestellt und an den Controller mit Schraubmontage montiert werden.

Optionen


Kommunikationskabel f ür Controllerparametrierung

1) Kommunikationskabel JXC-W2A-C

* Kann direkt an den Controller angeschlossen werden.

2 USB-Kabel LEC-W2-U

3Controller-Einstellset JXC-W2A

Ein Set, bestehend aus einem Kommunikationskabel (JXC-W2A-C) und einem USB-Kabel (LEC-W2-U)

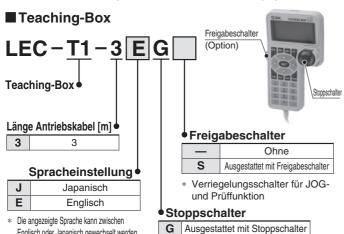
- <Controller-Software/USB-Treiber>
- · Controller-Software
- · USB-Treiber (für JXC-W2A-C)

Von der SMC-Webseite herunterladen: https://www.smc.eu

Systemvoraussetzungen Hardware

OS	Windows®7, Windows®8.1, Windows®10
Kommunikations- schnittstelle	USB 1.1 oder USB 2.0-Anschlüsse
Anzeige	1024 x 768 oder höher

* Windows®7. Windows®8.1. und Windows®10sind registrierte Handelsmarken der Microsoft Corporation in den USA.

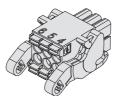

■ DIN-Schienen-Montagesatz LEC-3-D0

* Mit 2 Befestigungsschrauben

Der DIN-Schienen-Anbausatz kann nachträglich bestellt und an den Controller mit Schraubmontage montiert werden.

■ DIN-Schiene AXT100-DR-

* Für 🗆 geben Sie eine Zahl aus der Zeilen-Nr. in der Tabelle auf den Seiten 44 und 53 ein. Siehe Abmessungen auf Seiten 45, 52 und 53 für Befestigungsdimensionen.


Technische Daten

Englisch oder Japanisch gewechselt werden.

Tooliilloollo Batoli	
Element	Beschreibung
Schalter	Stoppschalter, Schalter zum Aktivieren (Option)
Länge Antriebskabel [m]	3
Schutzart	IP64 (außer Stecker)
Betriebstemperaturbereich [°C]	5 bis 50
Luftfeuchtigkeitsbereich [%RH]	max. 90 (keine Kondensation)
Gewicht [g]	350 (außer Kabel)

■ Spannungsversorgungsstecker JXC-CPW

* Der Spannungsversorgungsstecker ist Zubehör

(6) (5) (4) (3) (2) (1) (1) C24V (2) M24V

④ 0V (5) N.C.

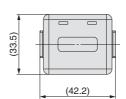
6 LK RLS

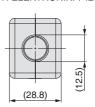
3 EMG

Spannungsversorgungsstecker

opannangovoroorgangootookor									
Klemmenbezeichnung	Funktion	Details							
0V	Gemeinsame Versorgung (–)	Die M24V-Klemme, C24V-Klemme, EMG-Klemme und LK RLS-Klemme liegen an gemeinsamer Leitung (-).							
M24V	Motor-Spannungsversorgung (+)	Motor-Spannungsversorgung (+) am Controller							
C24V	Steuerungs-Spannungsversorgung (+)	Steuerungs-Spannungsversorgung (+) am Controller							
EMG	Stopp Signal (+)	Positive Spannung für Stopp Signal Freigabe							
LK RLS	Entriegelung (+)	Positive Spannung für Entriegelung							

■ Adapterkabel P5062-5 (Kabellänge: 300 mm)

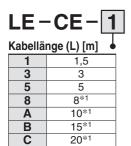


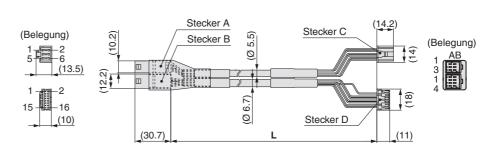

* Für den Anschluss der Teaching-Box (LEC-T1-3□G□) oder des Controller-Einstellsets (LEC-W2) an den Controller wird ein Adapterkabel benötigt.

■ Störfiltersatz

LEC-NFA

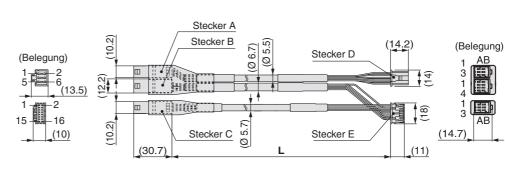
Inhalt des Satzes: 2 Störschutzfilter (Hergestellt von WÜRTH ELEKTRONIK: 74271222)




Informationen zur Installation finden Sie in der Betriebsanleitung des JXCEH/PH.

Serie JXC5H/6H Serie JXCEH/9H/PH Antriebskabel (Option)

[Roboterkabel für batterielosen Absolutwertgeber (Schrittmotor 24 VDC)]


Gewicht

Produkt-Nr.	Gewicht [g]	Anm.
LE-CE-1	190	
LE-CE-3	360	
LE-CE-5	570	
LE-CE-8	900	Robotikkabel
LE-CE-A	1120	
LE-CE-B	1680	
LE-CE-C	2210	

Signal	Belegung Stecker A		Aderfarbe	Belegung Stecker C
Α	B-1		braun	2
Ā	A-1		rot	1
В	B-2		orange	6
B	A-2		gelb	5
COM-A/COM	B-3		grün	3
COM-B/—	A-3		blau	4
Signal	Belegung Stecker B	Abschirmung	Aderfarbe	Belegung Stecker D
Vcc	B-1		braun	12
Erdung	A-1		schwarz	13
Ā	B-2		Rot	7
Α	A-2		schwarz	6
B	B-3		orange	9
В	A-3		Schwarz	8
SD+ (RX)	B-4		gelb	11
SD- (TX)	A-4	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Schwarz	10
		′ ′	Schwarz	3

[Roboterkabel mit Verriegelung für batterielosen Absolutwertgeber (Schrittmotor 24 VDC)]

Für Motorbremse und Sensor

Gewicht

Produkt-Nr.	Gewicht [g]	Anm.
LE-CE-1-B	240	
LE-CE-3-B	460	
LE-CE-5-B	740	
LE-CE-8-B	1170	Robotikkabel
LE-CE-A-B	1460	
LE-CE-B-B	2120	
LE-CE-C-B	2890	

Signal A Ā B G COM-A/COM	Belegung Stecker A B-1 A-1 B-2 A-2 B-3		Aderfarbe braun rot orange gelb grün	Belegung Stecker D 2 1 6 5
COM-B/—	A-3		blau	4
Signal	Belegung Stecker B	Abschirmung	Aderfarbe	Belegung Stecker E
Vcc	B-1		braun	12
Erdung	A-1		schwarz	13
Ā	B-2		Rot	7
Α	A-2		schwarz	6
B	B-3		orange	9
В	A-3		Schwarz	8
SD+ (RX)	B-4		gelb	11
SD- (TX)	A-4	 	Schwarz	10
	Belegung	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Schwarz	3
Signal	Stecker C			
Motorbremse (+)	B-1		Rot	4
Motorbremse (-)	A-1		schwarz	5
Sensor (+)	B-3		braun	1
Sensor (-)	A-3	 	blau	2

Elektrische Antriebe

Batterieloser Absolut-Encoder Produktspezifische Sicherheitshinweise

Vor der Handhabung der Produkte durchlesen. Siehe Umschlagseite für Sicherheitsvorschriften. Weitere Hinweise für elektrische Antriebe entnehmen Sie den "Sicherheitshinweise zur Handhabung von SMC-Produkten" und der "Betriebsanleitung" auf der SMC-Website: https://www.smc.eu

Handhabung

. Achtung

1. ID-Übereinstimmungsfehler des Absolutwertgebers bei der ersten Einschaltung

In den folgenden Fällen wird nach der Einschaltung ein "ID-Übereinstimmungsfehler" gemeldet. Führen Sie nach dem Zurücksetzen des Alarms vor der Verwendung zunächst eine Rückkehr zur Referenzposition durch.

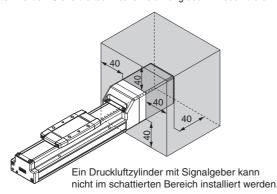
- Wenn ein elektrischer Antrieb angeschlossen wird und die Spannungsversorgung zur Erstinbetriebnahme eingeschaltet wird*1
- · Wenn der Antrieb oder Motor ausgetauscht wird
- · Wenn der Controller ersetzt wird
- *1 Wenn Sie einen elektrischen Antrieb und einen Controller mit der eingestellten Bestellnummer erworben haben, wurde die Kopplung möglicherweise bereits vorgenommen, sodass der Alarm nicht ausgelöst wird.

"ID-Übereinstimmungsfehler"

Der Betrieb wird durch die Abstimmung der Geber-ID auf der Seite des elektrischen Antriebs mit der im Controller registrierten ID ermöglicht. Dieser Alarm tritt auf, wenn die Geber-ID nicht mit dem registrierten Wert des Controllers übereinstimmt. Durch das Zurücksetzen dieses Alarms wird die Geber-ID erneut im Controller registriert (gekoppelt).

Wenn ein Controller nach Abschluss der Kopplung gewechselt wird											
	Geber-ID-Nr	: (* Die folgen	den Zahlen sin	d Beispiele.)							
Antrieb	17623 17623 17623 17623										
Controller	17623	17699	17699 17623								
ID-Übereinstimmungsfehler ist aufgetreten?	Nein	Ja	Fehlerrückstellung ⇒ Nein								

Die ID-Nummer wird automatisch überprüft, wenn die Steuerungs-Spannungsversorgung eingeschaltet wird.

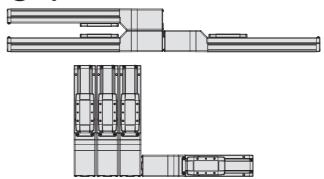

Wenn die ID-Nummer nicht übereinstimmt, wird ein Fehler ausgegeben.

2. In Umgebungen, in denen starke Magnetfelder vorhanden sind, kann die Verwendung eingeschränkt sein.

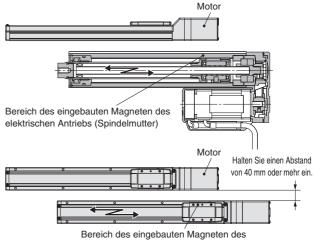
Im Drehgeber wird ein magnetischer Sensor verwendet. Wenn der Antrieb in einer Umgebung eingesetzt wird, in der starke Magnetfelder vorhanden sind, kann es daher zu Fehlfunktionen oder Ausfällen kommen.

Setzen Sie den Antriebsmotor keinen Magnetfeldern mit einer magnetischen Flussdichte von 1 mT oder mehr aus.

Bei der Installation eines elektrischen Antriebs und eines Druckluftzylinders mit Signalgeber (z. B. CDQ2-Serie) oder mehrere elektrische Antriebe nebeneinander, muss ein Abstand von 40 mm oder mehr um den Motor eingehalten werden. Siehe die technische Zeichnung des Antriebsmotors.

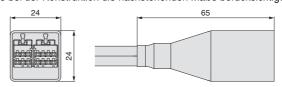


• Bei der Anordnung von Antrieben


SMC Antriebe können mit ihren Motoren nebeneinander angeordnet werden. Bei Antrieben mit eingebautem Signalgeber-Magneten (Serien LEY und LEF) ist jedoch ein Abstand von mindestens 40 mm zwischen den Motoren und der Stelle, an der der Magnet vorbeigeführt wird, einzuhalten.

Bei der Serie LEF befindet sich der Magnet in der Mitte des Tisches, während er sich bei der Serie LEY im Bereich des Kolbens befindet. (Einzelheiten finden Sie in der technischen Zeichnung im Katalog).

Sie können mit ihren Motoren nebeneinander angeordnet werden.


Achten Sie darauf, dass sich die Motoren nicht in unmittelbarer Nähe der Stelle befinden, an der der Magnet vorbeigeführt wird.

Bereich des eingebauten Magneten des elektrischen Antriebs (Schlitteneinheit)

Die Steckergröße des Motorkabels unterscheidet sich von der des elektrischen Antriebs mit einem Inkrementalgeber.

Der Motorkabelstecker eines elektrischen Antriebs mit einem batterielosen Absolutwertgeber unterscheidet sich von dem eines elektrischen Antriebs mit einem Inkrementalgeber. Da die Abmessungen der Steckerabdeckungen unterschiedlich sind, sollten Sie bei der Konstruktion die nachstehenden Maße berücksichtigen.

Abmessungen der Steckerabdeckung des batterielosen Absolutwertgebers

* CE-, UKCA- und UL-konforme Produkte finden Sie in den folgenden Tabellen und auf den folgenden Seiten.

■ Controller "O": Konform "ד: Nicht konform

Ctond	N I a a ma la a	0001
Stand	November	ンロンコ

Controller	"O : Konioriii "×	. INICI	IL KUIII	OHH		
kompatibler Motor	Serie	C.€	c '91 0'us			
		CA	Konformität	Zertifikat-Nr. (Datei-Nr.)		
	JXCE1	0	0	E480340		
	JXC91	0	0	E480340		
	JXCP1	0	0	E480340		
Schrittmotor	JXCD1	0	0	E480340		
(Inkremental)	JXCL1	0	0	E480340		
(IIIKIEIIIEIIIai)	JXCLF	0	0	E480340		
	LECP1	0	0	E339743		
	LECP2	0	0	E339743		
	LECPA	0	0	E339743		
	JXC51/61	0	0	E480340		
	JXCE1	0	0	E480340		
Schrittmotor	JXC91	0	0	E480340		
(Batterieloser	JXCP1	0	0	E480340		
Absolut-Encoder)	JXCD1	0	0	E480340		
Absolut-Elicodel)	JXCL1	0	0	E480340		
	JXCLF		0	E480340		
	JXCM1	0	0	E480340		
Schrittmotor in High	JXC5H/6H	0	0	E480340		
Performance Ausführung	JXCEH	0	0	E480340		
(24 VDC)	JXC9H	0	0	E480340		
(24 VDG)	JXCPH	0	0	E480340		
Servomotor (24 VDC)	LECA6	0	0	E339743		
Mehrachs-	JXC73	0	×	_		
Schrittmotor-	JXC83	0	×			
Controller	JXC93	0	×	_		
Controller	JXC92	0	×	_		

Serie	ΩK (€		C UL US							
		Kontormität	Zertifikat-Nr. (Datei-Nr.)							
LECSA	0	0	E466261							
LECSB	0	×	_							
LECSC	0	×	_							
LECSS	0	×	_							
LECSB-T	0	0	E466261							
LECSC-T	0	0	E466261							
LECSN-T	0	O*1	E466261							
LECSS-T	0	0	E466261							
LECYM	0	×	_							
LECYU	0	×	_							
	LECSA LECSB LECSC LECSS-T LECSC-T LECSS-T LECSS-T LECSM-T	Serie UK CA LECSA LECSB LECSC LECSS LECSB-T LECSC-T LECSN-T LECSS-T LECSS-T LECYM O	Serie							

^{*1} Nur die Option "Ohne Netzwerkkarte" ist UL-konform.

Antriebe "O": Konform "ד: Nicht konform

Stand November 2021

Anthebe "C	: Noniorm "x":	INICHT	KONTOR			Stan	ia ivov	ember 2021	
kompatibler Motor	Serie	C.€		c SN °us Zertifikat-Nr. (Datei-Nr.)	kompatibler Motor	Serie	R €		c SN ° us Zertifikat-Nr. (Datei-Nr.)
	LEFS	0	×		Schrittmotor in High				, i
	11-LEFS		×	_	Performance Ausführung	LEFS		×	_
	25A-LEFS	0	×	_	(24 VDC)				
	LEFB	0	×	_		LEFS	0	×	
	LEL	0	×	_		11-LEFS	0	×	
	LEM	0	×	_		25A-LEFS	0	×	
	LEY	0	×	_		LEFB	Ŏ	×	_
	25A-LEY	0	×	_	_	LEY	ŏ	×	_
Schrittmotor	LEY-X5/X7	0	×	_	Servomotor	LEY-X5/X7	Ō	×	_
(Inkremental)	LEYG	0	×	_	(24 VDC)	LEYG	Ō	×	_
(IIIKI EIII EIII ai)	LES	0	×	_		LES	Ō	×	_
	LESH	0	×	_		LESH	Ŏ	×	_
	LEPY	0	×	_		LEPY	Ŏ	×	_
	LEPS	0	×	_		LEPS	Ŏ	×	_
	LER	0	×	_		LEFS	0		
	LEHZ	0	×	_		11-LEFS	0	×	
	LEHZJ	0	×	_		25A-LEFS	0	×	
	LEHF	0	×	_		LEFB	0	×	
	LEHS		×			LEJS	0	×	_
	LEFS	0	×	_		11-LEJS	0	×	_
	LEFB	0	×	_	AC-Servomotor	25A-LEJS	0	×	
	LEKFS	0	×	_		LEJB	Ö	×	_
	LEY	0	×	_		LEY25/32/63	Ö	×	_
Schrittmotor	LEY-X8	0	×	_		LEY100	Ŏ	×	_
(Batterieloser	LEYG	0	×	_		LEYG	ŏ	×	_
Absolut-Encoder)	LES	0	×	_		LESYH	0	×	_
	LESH	0	×	_		223111			I
	LESYH	0	×	_					
	LER	0	×	_	* Antriebe, die als ein	zelne Einheiten I	bestell	t werde	en, sind nicht
	LEHF	0	×	_	UL-konform.				

erden, sind nicht

kompatibler Motor	Serie LEFS 11-LEFS 25A-LEFS	CE UK CA O		51/61 c	○ CE CE CE CE CE CE CE CE CE CE CE CE CE	Konformität	c SN° us Zertifikat-Nr. (Datei-Nr.)	C€ CE	JXC	: " (12 " us	(€ UK	JXC	c '71 2'us	(€ uĸ		c AL °us
	11-LEFS 25A-LEFS	0	0	E339743			Zertifikat-Nr. (Datei-Nr.)									
_	11-LEFS 25A-LEFS	0		-	0				Konformität	Zertifikat-Nr. (Datei-Nr.)	CA	Konformität	Zertifikat-Nr. (Datei-Nr.)	CA	Konformität	Zertifikat-Nr. (Datei-Nr.
	25A-LEFS		0		_	0	E339743	0	0	E339743	0	0	E339743	0	0	E339743
				E339743	0	0	E339743	0	0	E339743	0	0	E339743	0	0	E339743
	LEED	\vdash	0	E339743	0	0	E339743	0	0	E339743	0	0	E339743	0	0	E339743
L	LEFB	0	0	E339743	0	0	E339743	0	0	E339743	0	0	E339743	0	0	E339743
	LEL	0	0	E339743	0	0	E339743	0	0	E339743	0	0	E339743	0	0	E339743
LEM LEY		0	0	E339743	0	0	E339743	0	0	E339743	0	0	E339743	0	0	E339743
		0	0	E339743	0	0	E339743	0	0	E339743	0	0	E339743	0	0	E339743
	25A-LEY	0	0	E339743	0	0	E339743	0	0	E339743	0	0	E339743	0	0	E339743
Schrittmotor	LEY-X5/X7	0	×		0	×	_	0	×	_	0	×	_	0	×	<u> </u>
(Inkremental)	LEYG	0	0	E339743	0	0	E339743	0	0	E339743	0	0	E339743	0	0	E339743
(IIIKI elilelitai)	LES	0	0	E339743	0	0	E339743	0	0	E339743	0	0	E339743	0	0	E339743
	LESH	0	0	E339743	0	0	E339743	0	0	E339743	0	0	E339743	0	0	E339743
L	LEPY	0	0	E339743	0	0	E339743	0	0	E339743	0	0	E339743	0	0	E339743
	LEPS	0	0	E339743	0	0	E339743	0	0	E339743	0	0	E339743	0	0	E339743
	LER	0	0	E339743	0	0	E339743	0	0	E339743	0	0	E339743	0	0	E339743
	LEHZ	0	0	E339743	0	0	E339743	0	0	E339743	0	0	E339743	0	0	E339743
	LEHZJ	0	0	E339743	0	0	E339743	0	0	E339743	0	0	E339743	0	0	E339743
	LEHF	0	0	E339743	0	0	E339743	0	0	E339743	0	0	E339743	0	0	E339743
	LEHS		0	E339743	0	0	E339743	0	0	E339743	0	0	E339743	0	0	E339743

			JX	CL1		JXC	CLF		JXC	CM1		LEC	CP1		LE	CP2
kompatibler Motor	Serie	UK UK		c FL L'us	C €		c 'AL 'us	UK UK		c FL °us	UK €		c FLL 'us	UK UK		c '71 1° us
		CA	Konformität	Zertifikat-Nr. (Datei-Nr.)	CA	Konformität	Zertifikat-Nr. (Datei-Nr.)	CA	Konformität	Zertifikat-Nr. (Datei-Nr.)	CA	Konformität	Zertifikat-Nr. (Datei-Nr.)	CA	Konformität	Zertifikat-Nr. (Datei-Nr.)
	LEFS	0	0	E339743	0	0	E339743	0	0	E339743	0	0	E339743	×	×	_
	11-LEFS	0	0	E339743	0	0	E339743	0	0	E339743	0	0	E339743	×	×	_
	25A-LEFS	0	0	E339743	0	0	E339743	0	0	E339743	0	0	E339743	×	×	_
	LEFB	0	0	E339743	0	0	E339743	0	0	E339743	0	0	E339743	×	×	_
	LEL	0	0	E339743	0	0	E339743	0	0	E339743	0	0	E339743	×	×	_
	LEM	0	0	E339743	0	0	E339743	0	0	E339743	0	0	E339743	0	0	E339743
	LEY	0	0	E339743	0	0	E339743	0	0	E339743	0	0	E339743	×	×	_
	25A-LEY	0	0	E339743	0	0	E339743	0	0	E339743	0	0	E339743	×	×	_
Schrittmotor	LEY-X5/X7	0	×	_	0	0	E339743	0	×	_	0	×	_	×	×	_
	LEYG	0	0	E339743	0	0	E339743	0	0	E339743	0	0	E339743	×	×	_
(Inkremental)	LES	0	0	E339743	0	0	E339743	0	0	E339743	0	0	E339743	×	×	_
	LESH	0	0	E339743	0	0	E339743	0	0	E339743	0	0	E339743	×	×	_
	LEPY	0	0	E339743	0	0	E339743	0	0	E339743	0	0	E339743	×	×	_
	LEPS	0	0	E339743	0	0	E339743	0	0	E339743	0	0	E339743	×	×	_
	LER	0	0	E339743	0	0	E339743	0	0	E339743	0	0	E339743	×	×	_
	LEHZ	0	0	E339743	0	0	E339743	0	0	E339743	0	0	E339743	×	×	_
	LEHZJ	0	0	E339743	0	0	E339743	0	0	E339743	0	0	E339743	×	×	_
	LEHF		0	E339743	0	0	E339743	0	0	E339743	0	0	E339743	×	×	_
	LEHS	0	0	E339743	0	0	E339743	0	0	E339743	0	0	E339743	×	×	_

	_					
			LEC	CPA		
kompatibler Motor	Serie	UK UK	c FL L'us			
		CA	Konformität	Zertifikat-Nr. (Datei-Nr.)		
	LEFS	0	0	E339743		
	11-LEFS	0	0	E339743		
	25A-LEFS	0	0	E339743		
	LEFB	0	0	E339743		
	LEL	0	0	E339743		
	LEM	0	0	E339743		
	LEY	0	0	E339743		
	25A-LEY	0	0	E339743		
Schrittmotor	LEY-X5/X7	0	×	_		
	LEYG	0	0	E339743		
(Inkremental)	LES	0	0	E339743		
	LESH	0	0	E339743		
	LEPY	0	0	E339743		
	LEPS	0	0	E339743		
	LER	0	0	E339743		
	LEHZ	0	0	E339743		
	LEHZJ	0	0	E339743		
	LEHF	0	E339743			
	LEHS	0	0	E339743		

■Antriebe (b	ei Bestell	ung	mit	einem (Con	troll	er) "⊝": Ko	onform	,ד: N	licht konforn	۱ "-": N	Nicht z	utreffend	Stan	id Nov	ember 2021	
			JXC51/61			JXCE1			JX(C91		JX(CP1	JXCD1			
kompatibler Motor	Serie	C¥ UK		c SL °us	CK CK C€		c FL us	UK UK	c 'Al 'us		(€	c '%1 ° us		₩ (€		c Fl °us	
		CH	Konformität	Zertifikat-Nr. (Datei-Nr.)	CH	Konformität	Zertifikat-Nr. (Datei-Nr.)	CA	Konformität	Zertifikat-Nr. (Datei-Nr.)	CA	Konformität	Zertifikat-Nr. (Datei-Nr.)	CH	Konformität	Zertifikat-Nr. (Datei-Nr.)	
	LEFS	0	×	_	0	×	_	0	×	_	0	×	_	0	×	_	
	LEFB	0	×	_	0	×	_	0	×	_	0	×	_	0	×	_	
	LEKFS	0	×	_	0	×	_	0	×	_	0	×	_	0	×	_	
	LEY	0	×	_	0	×	_	0	×	_	0	×	_	0	×	_	
Schrittmotor	LEY-X8	0	×	_	0	×	_	0	×	_	0	×	_	0	×	_	
(Batterieloser	LEYG	0	×	_	0	×	_	0	×	_	0	×	_	0	×	_	
Absolut-Encoder)	LES	0	×	_	0	×	_	0	×	_	0	×	_	0	×	_	
,	LESH	0	×	_	0	×	_	0	×	_	0	×	_	0	×	_	
	LESYH	0	×	_	0	×	_	0	×	_	0	×	_	0	×	_	
	LER	0	×	_	0	×	_	0	×	_	0	×	_	0	×	_	
	LEHF		×		0	×	_		×	_	0	×	_		×	_	

			JX(CL1		JX0	CLF		JXCM1			
kompatibler Motor	Serie	C€ C€		c '711 ° us	い。		c 711 ° us	€ ₩	c TAB US			
		СН	Konformität	Zertifikat-Nr. (Datei-Nr.)	СН	Konformität	Zertifikat-Nr. (Datei-Nr.)	CH	Konformität	Zertifikat-Nr. (Datei-Nr.)		
	LEFS	0	×	_	0	×	_	0	×	_		
	LEFB	0	×	_	0	×	_	0	×	_		
	LEKFS	0	×	_	0	×	_	0	×	_		
	LEY	0	×	_	0	×	_	0	×	_		
Schrittmotor	LEY-X8	0	×	_	0	×	_	0	×	_		
(Batterieloser	LEYG	0	×	_	0	×	_	0	×	_		
Absolut-Encoder)	LES	0	×	_	0	×	_	0	×	_		
,	LESH	0	×	_	0	×	_	0	×	_		
	LESYH	0	×	_	0	×	_	0	×	_		
	LER	0	×	_	0	×	_	0	×	_		
	LEHF	0	×	_	0	×	_	0	×			

■ Antriebe (bei Bestellung mit einem Controller) "O": Konform "ד: Nicht konform "-": Nicht zutreffend Stand November 2021

			JXC5	H/6H		JXC	EH		JXC	C9H	JXCPH			
kompatibler Motor	Serie	CE UK CE		c SN °us	C¥ C¥		c Sus us	Ç KA		c Susus Zertifikat-Nr. (Datei-Nr.)	CE UK UK		c Sus us	
Schrittmotor in High Performance Ausführung (24 VDC)	LEF	0	0	E339743	0	0	E339743	0	0	E339743	0	0	E339743	

			JXC5	H/6H		JXC	CEH		JXC	C9H	JXCPH			
kompatibler Motor	Serie	CK CK CK		c SN °us Zertifikat-Nr. (Datei-Nr.)	£ €		c SN ° us Zertifikat-Nr. (Datei-Nr.)	Ç. €		c SN ° us Zertifikat-Nr. (Datei-Nr.)	Ç K K K K K K K K K K K K K K K K K K K		c All ° us Konformität Zertifikat-Nr. (Datei-Nr.)	
Hohe Leistung (Batterieloser Absolut-Encoder)	LEF	0	×	_	0	×	_	0	×	_	0	×	_	

			LEC	CA6
kompatibler Motor	Serie	C E SAN		
		CA	Konformität	Zertifikat-Nr. (Datei-Nr.)
	LEFS	0	0	E339743
	11-LEFS	0	0	E339743
	25A-LEFS	0	0	E339743
Servomotor	LEFB	0	0	E339743
	LEY	0	0	E339743
(24 VDC)	LEY-X7	0	×	_
	LEYG	0	0	E339743
	LES	0	0	E339743
	LESH	0	0	E339743

		LECSA*1				LEC	CSB		LEC	CSC		LE	CSS	LECSB-T*1		
kompatibler Motor	Serie	CK CK C€	U III WANDS		(€ UK	C Masus		UK CA Konformit		c FL °us	C KG	c '%1 ° us		쯗썖	C TO US	
		CA	Konformität	Zertifikat-Nr. (Datei-Nr.)	CA	Konformität	Zertifikat-Nr. (Datei-Nr.)	CA	Konformität	Zertifikat-Nr. (Datei-Nr.)	CA	Konformität	Zertifikat-Nr. (Datei-Nr.)	CA	Konformität	Zertifikat-Nr. (Datei-Nr.)
	LEFS	0	0	E339743	0	×	_	0	×	_	0	×	_	0	×	_
	11-LEFS	0	0	E339743	0	×	_	0	×	_	0 2	_				
	25A-LEFS	0	0	E339743	0	×	_	0	×		0	×	_	0	×	_
	LEFB	0	0	E339743	0	×	_	0	×	_	0	×	_	0	×	_
	LEJS	0	0	E339743	0	×	_	0	×	_	0	×	_	0	×	_
AC-Servomotor	11-LEJS	0	0	E339743	0	×	_	0	×	_	0	×	_	0	×	_
AC-Servomotor	25A-LEJS	0	0	E339743	0	×	_	0	×	_	0	×	_	0	×	_
	LEJB	0	0	E339743	0	×	_	0	×	_	0	×	_	0	×	_
	LEY25/32/63	0	0	E339743	0	×	_	0	×	_	0	×	_	0	×	_
	LEY100	I —	I —		_	_	_	_	_	_	_	—	_	0	×	_
	LEYG	0	0	E339743	0	×	_	0	×	_	0	×	_	0	×	_
	LESYH		×	_	_	_	_	_	_	_	_	_	_	0	×	_

			LECS	C-T*1		LECS	N-T*1		LECSS-T*1			
kompatibler Motor	Serie	UK UK	c FL °us		C €		c 'RL 'us	UK €	c AL °us			
		CA	Konformität	Zertifikat-Nr. (Datei-Nr.)	CA	Konformität	Zertifikat-Nr. (Datei-Nr.)	CA	Konformität	Zertifikat-Nr. (Datei-Nr.)		
	LEFS	0	×	_	0	×	_	0	0	E339743		
	11-LEFS	0	×	_	0	×	_	0	0	E339743		
	25A-LEFS	0	×	_	0	×	_	0		E339743		
	LEFB	0	×	_	0	×	_	0	0	E339743		
	LEJS	0	×	_	0	×	_	0	0	E339743		
AC-Servomotor	11-LEJS	0	×	_	0	×	_	0	0	E339743		
AC-Servomotor	25A-LEJS	0	×	_	0	×	_	0	0	E339743		
	LEJB	0	×	_	0	×	_	0	0	E339743		
	LEY25/32/63	0	×	_	0	×	_	0	0	E339743		
	LEY100	0	×	_	0	×	_	0	×	_		
	LEYG	0	×	_	0	×	_	0	0	E339743		
	LESYH	0	×	_	0	×	_	0	×	_		

 $[\]ast 1~$ Auf dem Gehäuse des AC-Servomotors befindet sich ein "UL Zertifizierung"-Zeichen.

↑ Sicherheitsvorschriften

Diese Sicherheitsvorschriften sollen vor gefährlichen Situationen und/oder Sachschäden schützen. In diesen Hinweisen wird die potenzielle Gefahrenstufe mit den Kennzeichnungen "Achtung", "Warnung" oder "Gefahr" bezeichnet. Diese wichtigen Sicherheitshinweise müssen zusammen mit internationalen Sicherheitsstandards (ISO/ IEC) 1) und anderen Sicherheitsvorschriften beachtet werden.

Steuerungssysteme.

∧ Achtung:

Achtung verweist auf eine Gefährdung mit geringem Risiko, die leichte bis mittelschwere Verletzungen zur

Folge haben kann, wenn sie nicht verhindert wird. Warnung verweist auf eine Gefährdung mit mittlerem

Marnung: Risiko, die schwere Verletzungen oder den Tod zur Folge haben kann, wenn sie nicht verhindert wird.

> Risiko, die schwere Verletzungen oder den Tod zur Folge hat, wenn sie nicht verhindert wird.

Gefahr verweist auf eine Gefährdung mit hohem

∧ Warnung

1. Verantwortlich für die Kompatibilität bzw. Eignung des Produkts ist die Person, die das System erstellt oder dessen technische Daten

Da das hier beschriebene Produkt unter verschiedenen Betriebsbedingungen eingesetzt wird, darf die Entscheidung über dessen Eignung für einen bestimmten Anwendungsfall erst nach genauer Analyse und/oder Tests erfolgen, mit denen die Erfüllung der spezifischen Anforderungen überprüft wird.

Die Erfüllung der zu erwartenden Leistung sowie die Gewährleistung der Sicherheit liegen in der Verantwortung der Person, die die Systemkompatibilität festgestellt hat.

Diese Person muss anhand der neuesten Kataloginformation ständig die Eignung aller Produktdaten überprüfen und dabei im Zuge der Systemkonfiguration alle Möglichkeiten eines Geräteausfalls ausreichend berücksichtigen.

2. Maschinen und Anlagen dürfen nur von entsprechend geschultem Personal betrieben wer-den.

Das hier beschriebene Produkt kann bei unsachgemäßer Handhabung

Montage-, Inbetriebnahme- und Reparaturarbeiten an Maschinen und Anlagen, einschließlich der Produkte von SMC, dürfen nur von entsprechend geschultem und erfahrenem Personal vorgenommen

3. Wartungsarbeiten an Maschinen und Anlagen oder der Ausbau einzelner Komponenten dürfen erst dann vorgenommen werden, wenn die Sicherheit gewährleistet ist.

Inspektions- und Wartungsarbeiten an Maschinen und Anlagen dürfen erst dann ausgeführt werden, wenn alle Maßnahmen überprüft wurden, die ein Herunterfallen oder unvorhergesehene Bewegungen des angetriebenen Objekts verhindern.

Vor dem Ausbau des Produkts müssen vorher alle oben genannten Sicherheitsmaßnahmen ausgeführt und die Stromversorgung abgetrennt werden. Außerdem müssen die speziellen Vorsichtsmaßnahmen für alle entsprechenden Teile sorgfältig gelesen und verstanden worden sein. Vor dem erneuten Start der Maschine bzw. Anlage sind Maßnahmen zu treffen, um unvorhergesehene Bewegungen des Produkts oder Fehlfunktionen zu verhindern.

- 4. Die in diesem Katalog aufgeführten Produkte werden ausschließlich für die Verwendung in der Fertigungsindustrie und dort in der Automatisierungstechnik konstruiert und hergestellt. Für den Einsatz in anderen Anwendungen oder unter den im folgenden aufgeführten Bedingungen sind diese Produkte weder konstruiert, noch ausgelegt:
 - 1) Einsatz- bzw. Umgebungsbedingungen, die von den angegebenen technischen Daten abweichen, oder Nutzung des Produkts im Freien oder unter direkter Sonneneinstrahlung.
 - 2) Installation innerhalb von Maschinen und Anlagen, die in Verbindung mit Kernenergie, Eisenbahnen, Luft- und Raumfahrttechnik, Schiffen, Kraftfahrzeugen, militärischen Einrichtungen, Verbrennungsanlagen, medizinischen Geräten, Medizinprodukten oder Freizeitgeräten eingesetzt werden oder mit Lebensmitteln und Getränken, Notausschaltkreisen, Kupplungs- und Bremsschaltkreisen in Stanz- und Pressanwendungen, Sicherheitsausrüstungen oder anderen Anwendungen in Kontakt kommen, soweit dies nicht in der Spezifikation zum jeweiligen Produkt in diesem Katalog ausdrücklich als Ausnahmeanwendung für das jeweilige Produkt angegeben ist.

∧ Achtung

1) ISO 4414: Pneumatische Fluidtechnik -- Empfehlungen für den

Einsatz von Geräten für Leitungs- und

ISO 4413: Fluidtechnik - Ausführungsrichtlinien Hydraulik.

ISO 10218-1: Industrieroboter – Sicherheitsanforderungen.

IEC 60204-1: Sicherheit von Maschinen – Elektrische Ausrüstung

von Maschinen (Teil 1: Allgemeine Anforderungen)

- 3) Anwendungen, bei denen die Möglichkeit von Schäden an Personen, Sachwerten oder Tieren besteht und die eine besondere Sicherheitsanalyse verlangen.
- 4) Verwendung in Verriegelungssystemen, die ein doppeltes Verriegelungssystem mit mechanischer Schutzfunktion zum Schutz vor Ausfällen und eine regelmäßige Funktionsprüfung erfordern.

Bitte kontaktieren Sie SMC damit wir Ihre Spezifikation für spezielle Anwendungen prüfen und Ihnen ein geeignetes Produkt anbieten können.

Achtung

1. Das Produkt wurde für die Verwendung in der herstellenden Industrie konzipiert.

Das hier beschriebene Produkt wurde für die friedliche Nutzung in Fertigungsunternehmen entwickelt. Wenn Sie das Produkt in anderen Wirtschaftszweigen verwenden möchten, müssen Sie SMC vorher informieren und bei Bedarf entsprechende technische Daten aushändigen oder einen gesonderten Vertrag unterzeichnen.

Wenden Sie sich bei Fragen bitte an die nächste SMC-Vertriebsniederlassung.

Einhaltung von Vorschriften

Das Produkt unterliegt den folgenden Bestimmungen zur "Einhaltung von Vorschriften".

Lesen Sie diese Punkte durch und erklären Sie Ihr Einverständnis, bevor Sie das Produkt verwenden.

Einhaltung von Vorschriften


- 1. Die Verwendung von SMC-Produkten in Fertigungsmaschinen von Herstellern von Massenvernichtungswaffen oder sonstigen Waffen ist strengstens untersagt.
- 2. Der Export von SMC-Produkten oder -Technologie von einem Land in ein anderes hat nach den geltenden Sicherheitsvorschriften und -normen der an der Transaktion beteiligten Länder zu erfolgen. Vor dem internationalen Versand eines jeglichen SMC-Produkts ist sicherzustellen, dass alle nationalen Vorschriften in Bezug auf den Export bekannt sind und befolgt werden.

SMC-Produkte sind nicht für den Einsatz als Geräte im gesetzlichen Messwesen bestimmt.

Bei den von SMC hergestellten oder vertriebenen Produkten handelt es sich nicht um Messinstrumente, die durch Musterzulassungsprüfungen gemäß den Messgesetzen eines jeden Landes qualifiziert wurden.

Daher können SMC-Produkte nicht für betriebliche Zwecke oder Zulassungen verwendet werden, die den geltenden Rechtsvorschriften für Messungen des jeweiligen Landes unterliegen.

SMC Corporation (Europe)

Austria +43 (0)2262622800 www.smc.at Belgium +32 (0)33551464 www.smc.be Bulgaria +359 (0)2807670 Croatia +385 (0)13707288 www.smc.hr Czech Republic +420 541424611 www.smc.cz Denmark +45 70252900 Estonia +372 651 0370 Finland +358 207513513 www.smc.fi France Germany +49 (0)61034020 Greece +30 210 2717265 Hungary +36 23513000 Ireland Italy +39 03990691 Latvia +371 67817700

www.smc.bg www.smcdk.com www.smcee.ee +33 (0)164761000 www.smc-france.fr www.smc.de www.smchellas.gr www.smc.hu www.smcitalia.it www.smc.lv

office@smc.at info@smc.be office@smc.bg office@smc.hr office@smc.cz smc@smcdk.com info@smcee.ee smcfi@smc.fi supportclient@smc-france.fr info@smc.de sales@smchellas.gr office@smc.hu +353 (0)14039000 www.smcautomation.ie sales@smcautomation.ie mailbox@smcitalia.it info@smc.lv

Lithuania +370 5 2308118 www.smclt.lt Netherlands +31 (0)205318888 www.smc.nl Norway www.smc-norge.no +47 67129020 +48 222119600 Poland www.smc.pl +351 214724500 Portugal www.smc.eu Romania +40 213205111 www.smcromania.ro Russia +7 (812)3036600 www.smc.eu Slovakia +421 (0)413213212 www.smc.sk Slovenia +386 (0)73885412 www.smc.si Spain +34 945184100 www.smc.eu Sweden +46 (0)86031240 www.smc.nu **Switzerland** +41 (0)523963131 www.smc.ch Turkey +90 212 489 0 440 www.smcturkey.com.tr UK +44 (0)845 121 5122 www.smc.uk

info@smclt.lt info@smc.nl post@smc-norge.no office@smc.pl apoioclientept@smc.smces.es smcromania@smcromania.ro sales@smcru.com office@smc.sk office@smc si post@smc.smces.es smc@smc.nu info@smc.ch satis@smcturkey.com.tr sales@smc.uk

South Africa +27 10 900 1233 zasales@smcza.co.za www.smcza.co.za